Showing posts with label M-dwarfs. Show all posts
Showing posts with label M-dwarfs. Show all posts

Sunday, January 12, 2020

New Technique May Give NASA’s Webb Telescope a Way to Quickly Identify Planets with Oxygen

Conceptual image of water-bearing (left) and dry (right) exoplanets with oxygen-rich atmospheres. Crescents are other planets in the system, and the red sphere is the M-dwarf star around which the exoplanets orbit. The dry exoplanet is closer to the star, so the star appears larger. Credits: NASA/GSFC/Friedlander-Griswold

Researchers may have found a way that NASA's James Webb Space Telescope can quickly identify nearby planets that could be promising for our search for life, as well as worlds that are uninhabitable because their oceans have vaporized.

Since planets around other stars (exoplanets) are so far away, scientists cannot look for signs of life by visiting these distant worlds. Instead, they must use a cutting-edge telescope like Webb to see what's inside the atmospheres of exoplanets. One possible indication of life, or biosignature, is the presence of oxygen in an exoplanet’s atmosphere. Oxygen is generated by life on Earth when organisms such as plants, algae and cyanobacteria use photosynthesis to convert sunlight into chemical energy.

But what should Webb look for to determine if a planet has a lot of oxygen? In a new study, researchers identified a strong signal that oxygen molecules produce when they collide. Scientists say Webb has the potential to detect this signal in the atmospheres of exoplanets.

“Before our work, oxygen at similar levels as on Earth was thought to be undetectable with Webb, but we identify a promising way to detect it in nearby planetary systems,” said Thomas Fauchez of the Universities Space Research Association at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This oxygen signal is known since the early 80’s from Earth’s atmospheric studies, but has never been studied for exoplanet research.” Fauchez is the lead author of the study, appearing in the journal Nature Astronomy January 6.

The researchers used a computer model to simulate this oxygen signature by modeling the atmospheric conditions of an exoplanet around an M dwarf, the most common type of star in the universe. M dwarf stars are much smaller, cooler, and fainter than our Sun, yet much more active, with explosive activity that generates intense ultraviolet light. The team modelled the impact of this enhanced radiation on atmospheric chemistry, and used this to simulate how the component colors of the star's light would change when the planet would pass in front of it.

As starlight passes through the exoplanet’s atmosphere, the oxygen absorbs certain colors (wavelengths) of light— in this case, infrared light with a wavelength of 6.4 micrometers. When oxygen molecules collide with each other or with other molecules in the exoplanet’s atmosphere, energy from the collision puts the oxygen molecule in a special state that temporarily allows it to absorb the infrared light. Infrared light is invisible to the human eye, but detectable using instruments attached to telescopes.

“Similar oxygen signals exist at 1.06 and 1.27 micrometers and have been discussed in previous studies but these are less strong and much more mitigated by the presence of clouds than the 6.4 micrometer signal,” said Geronimo Villanueva, a co-author of the paper at Goddard.

Intriguingly, oxygen can also make an exoplanet appear to host life when it does not, because it can accumulate in a planet’s atmosphere without any life activity at all. For example, if the exoplanet is too close to its host star or receives too much star light, the atmosphere becomes very warm and saturated with water vapor from evaporating oceans. This water could be then broken down by the strong ultraviolet radiation into atomic hydrogen and oxygen. Hydrogen, which is a light atom, escapes to space very easily, leaving the oxygen behind.

Over time, this process can cause entire oceans to be lost while building up a thick oxygen atmosphere. So, abundant oxygen in an exoplanet’s atmosphere does not necessarily mean abundant life, but may instead indicate a rich water history.

“Depending upon how easily Webb detects this 6.4 micrometer signal, we can get an idea about how likely it is that the planet is habitable,” said Ravi Kopparapu, a co-author of the paper at Goddard. “If Webb points to a planet and detects this 6.4 micrometer signal with relative ease, this would mean that the planet has a very dense oxygen atmosphere and may be uninhabitable.”

The oxygen signal is so strong that it also can tell astronomers whether M dwarf planets have atmospheres at all, using just a few Webb transit observations.

“This is important because M dwarf stars are highly active, and it has been postulated that stellar activity might ‘blow away’ entire planetary atmospheres,” said Fauchez. “Knowing simply whether a planet orbiting an M dwarf can have an atmosphere at all is important for understanding star-planet interactions around these abundant but active stars.”

Although the oxygen signal is strong, cosmic distances are vast and M dwarfs are dim, so these stars will have to be relatively nearby for Webb to detect the signal in exoplanet atmospheres within a reasonable amount of time. An exoplanet with a modern Earth-like atmosphere will have to be orbiting an M dwarf that is within approximately 16 light-years of Earth. For a desiccated exoplanet with an oxygen atmosphere 22 times the pressure of Earth’s, the signal could be detected up to about 82 light-years away. One light-year, the distance light travels in a year, is almost six trillion miles. For comparison, the closest stars to our Sun are found in the Alpha Centauri system a little over 4 light-years away, and our galaxy is about 100,000 light-years across.

The research was funded in part by Goddard’s Sellers Exoplanet Environments Collaboration (SEEC), which is funded in part by the NASA Planetary Science Division's Internal Scientist Funding Model. This project has also received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant, the NASA Astrobiology Institute Alternative Earths team, and the NExSS Virtual Planetary Laboratory.

Webb will be the world's premier space science observatory, when it launches in 2021. It will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international project led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

Bill Steigerwald / Nancy Jones

NASA Goddard Space Flight Center, Greenbelt, Maryland

301-286-8955 / 301-286-0039

william.a.steigerwald@nasa.gov / nancy.n.jones@nasa.gov

Editor: Bill Steigerwald



Wednesday, November 01, 2017

New Exoplanet Survey Finds its First Planet

Artist's impression of the planet NGTS-1b

Artist's impression of the planet NGTS-1b



The Next Generation Transit Survey (NGTS) instrument at ESO’s Paranal Observatory in northern Chile has found its first exoplanet, a hot Jupiter orbiting an M-dwarf star [1] now named NGTS-1. The planet, NGTS-1b, is only the third gas giant to have been observed transiting an M-dwarf star, following Kepler-45b and HATS-6b. NGTS-1b is the largest and most massive of these three, with a radius of 130% and a mass of 80% those of Jupiter.

The NGTS uses an array of twelve 20-centimetre telescopes to search for the tiny dips in the brightness of a star caused when a planet in orbit around it passes in front of it (“transits”) and blocks some of its light. Once NGTS-1b had been discovered its existence was confirmed by follow-up observations at ESO’s La Silla Observatory: photometric observations with EulerCam on the 1.2-metre Swiss Leonhard Euler Telescope; and spectroscopic investigations with the HARPS instrument on ESO’s 3.6-metre telescope.

Small planets are relatively common around M-dwarf stars, whereas gas giants like NGTS-1b appear to be rarer around M-dwarfs than they are around stars more like the Sun. This is consistent with current theories of planet formation, but observations of more M-dwarfs are needed before a clear understanding of the numbers of giant planets around them can be arrived at. The NGTS is specifically designed to provide better data on planets around M-dwarf stars, and since they account for around 75% of stars in the Milky Way, studying them will help astronomers to understand the majority population of planets in the Galaxy.

The future could be very exciting for this exoplanet system as it has the potential to be studied in greater detail by the suite of instruments on board the NASA/ESA/CSA James Webb Space Telescope (JWST) which is due to be launched in 2019. 



Notes

[1] An M-dwarf is a small, faint star with approximately 8–50% of the mass of the Sun and with a surface temperature of less than 3700°C. 50 of the closest 60 stars to our Solar System are thought to be M-dwarfs, even though not a single one is bright enough to be visible from the Earth with the naked eye. 




More Information

This research is presented in a paper entitled “NGTS-1b: A hot Jupiter transiting an M-dwarf”, by D. Bayliss et al., to appear in the journal Monthly Notices of the Royal Astronomical Society.

The team is composed of: D. Bayliss (Université de Genève, Switzerland), E. Gillen (University of Cambridge, United Kingdom), P. Eigmüller (DLR, Germany), J. McCormac (University of Warwick, United Kingdom), R. Alexander (University of Leicester, United Kingdom), D. Armstrong (University of Warwick, United Kingdom), R. Booth (Queen's University Belfast, United Kingdom), F. Bouchy (Université de Genève, Switzerland), M. Burleigh, J. Cabrera (DLR, Germany), S. Casewell, A. Chaushev (University of Leicester, United Kingdom), B. Chazelas, S. Csizmadia, A. Erikson, F. Faedi (University of Warwick, United Kingdom), E. Foxwell (University of Warwick, United Kingdom), B. Gaensicke (University of Warwick, United Kingdom), M. Goad (University of Leicester, United Kingdom), A. Grange, M. Guenther (University of Cambridge, United Kingdom), S. Hodgkin (University of Cambridge, United Kingdom), J. Jackman, J. Jenkins (Universidad de Chile, Chile), G. Lambert (University of Cambridge), T. Louden (University of Warwick, United Kingdom), L. Metrailler (Université de Genève, Switzerland), M. Moyano (Universidad Católica del Norte, Chile), D. Pollacco (University of Warwick, United Kingdom), K. Poppenhaeger, (Queen's University Belfast, United Kingdom; Harvard-Smithsonian Center for Astrophysics, United States), D. Queloz (Université de Genève, Switzerland), R. Raddi (University of Warwick, United Kingdom), H. Rauer (DLR, Germany), L. Raynard (University of Leicester, United Kingdom), A. Smith, M. Soto (Universidad de Chile, Chile), A. Thompson (Queen’s University Belfast, United Kingdom), R. Titz-Weider (DLR, Germany), S. Udry (Université de Genève, Switzerland), S. Walker (University of Warwick, United Kingdom), C. Watson (Queen's University Belfast, United Kingdom), R. West (University of Warwick, United Kingdom) and P.J. Wheatley (University of Warwick, United Kingdom).



Links



Contacts

Daniel Bayliss
Department of Physics
University of Warwick
, UK
Tel: +44 (0) 24761 50342
Cell: +44 (0) 7514912757
Email: d.bayliss@warwick.ac.uk

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org


Wednesday, September 28, 2016

Precision Measurements of Exoplanet Velocities


An artist's conception of Kepler 62-e, a super-Earth exoplanet. Astronomers working to detect super-Earths around the most common kind of stars, M dwarfs, have successfully tested infrared techniques that overcome some of the limitations of optical measurements. Credit: NASA/Kepler mission


The search for exoplanets via the radial velocity technique has been underway for nearly thirty years, measuring the wobbles in a star's motion caused by the presence of orbiting bodies. The method has been very successful and has detected hundreds of exoplanets, but has been overtaken (at least in numbers of detections) by the transit method, which looks for dips in the star's light. The radial velocity method has some powerful advantages, however, most notably that it can spot planets that do not pass across the face of the star ("transit"). The majority of radial velocity targets (so far) have been stars similar roughly to our Sun, but this neglects the majority of stars, the less massive class M dwarfs, which make up 75% of the stars in the solar neighborhood. Surveys of some nearby M dwarfs have been able to reach astonishing velocity precisions - as tiny as a few meters per second (4.5 miles per hour) -- adequate to detect a super-Earth orbiting in the star’s habitable zone (where surface water remains liquid). In order to detect an Earth-mass planet around a solar-type star, however, precisions twenty times better are needed.

One of the technical challenges in measuring radial velocities for M-dwarfs is that they are relatively faint in the optical. Near infrared techniques can ameliorate this issue because the stars are brighter in the infrared, but naturally face some other problems. CfA astronomers John Johnson and Dave Latham were part of a team of scientists working to advance infrared techniques for radial velocity studies of M-dwarfs. Using the current infrared instruments on NASA’s Infrared Telescope Facility in Hawaii, the astronomers were able to achieve about three meters per second precision on some test M stars, demonstrating that the technique and the methods used to process and analyze the data are reliable. There are next generation infrared instruments are in the pipeline, and the new paper demonstrates that they should be able to spot super-Earths and mini-Neptunes in the habitable zones of M dwarfs.


Reference(s): 

"Retrieval of Precise Radial Velocities from Near-infrared High-resolution Spectra of Low-mass Stars," Peter Gao, Plavchan P., Gagné J, Furlan E., Bottom M., Anglada-Escudé G., White R., Davison C. L., Beichman C., Brinkworth C., Johnson J., Ciardi D., Wallace K., Mennesson B., von Braun K., Vasisht G., Prato L., Kane S. R., Tanner A., Crawford T. J., Latham D., Rougeot R., Geneser C. S., and Catanzarite J., PASP 128, 104, 2016.




Thursday, March 14, 2013

Earth-sized planets in habitable zones are more common than previously thought

The graphic shows optimistic and conservative habitable zone boundaries around cool, low mass stars. The numbers indicate the names of known Kepler planet candidates. Yellow color represents candidates with less than 1.4 times Earth-radius. Green color represents planet candidates between 1.4 and 2 Earth radius. Planets with "+" are not in the habitable zone.  Image: Penn State

UNIVERSITY PARK, Pa. -- The number of potentially habitable planets is greater than previously thought, according to a new analysis by a Penn State researcher, and some of those planets are likely lurking around nearby stars.

"We now estimate that if we were to look at 10 of the nearest small stars we would find about four potentially habitable planets, give or take," said Ravi Kopparapu, a post-doctoral researcher in geosciences. "That is a conservative estimate," he added. "There could be more."

Kopparapu detailed his findings in a paper accepted for publication in Astrophysical Journal Letters. In it, he recalculated the commonness of Earth-sized planets in the habitable zones of low-mass stars, also known as cool stars or M-dwarfs.

Scientists focus on M-dwarfs for several reasons, he explained. The orbit of planets around M-dwarfs is very short, which allows scientists to gather data on a greater number of orbits in a shorter period of time than can be gathered on Sun-like stars, which have larger habitable zones. M-dwarfs are also more common than stars like the Earth's Sun, which means more of them can be observed.

According to his findings, "The average distance to the nearest potentially habitable planet is about seven light years. That is about half the distance of previous estimates," Kopparapu said. "There are about eight cool stars within 10 light-years, so conservatively, we should expect to find about three Earth-size planets in the habitable zones."

The work follows up on a recent study by researchers at the Harvard-Smithsonian Center for Astrophysics which analyzed 3,987 M-dwarf stars to calculate the number of Earth-sized planet candidates in cool stars' habitable zones—a region around a star where rocky planets are capable of sustaining liquid water and therefore life. That study used habitable zone limits calculated in 1993 by Jim Kasting, now an Evan Pugh Professor in Penn State's Department of Geosciences. Kopparapu noticed that its findings, based on data from NASA's Kepler satellite, didn't reflect the most recent estimates for determining whether planets fall within a habitable zone.

These newer estimates are based on an updated model developed by Kopparapu and collaborators, using information on water and carbon dioxide absorption that was not available in 1993. Kopparapu applied those findings to the Harvard team's study, using the same calculation method, and found that there are additional planets in the newly determined habitable zones.

"I used our new habitable zone calculations and found that there are nearly three times as many Earth-sized planets in the habitable zones around these low mass stars as in previous estimates," Kopparapu said. "This means Earth-sized planets are more common than we thought, and that is a good sign for detecting extraterrestrial life."
The paper is available online at: http://lanl.arxiv.org/abs/1303.2649

Contacts: 

Anne Danahy 
Email: acd2@psu.edu
Work Phone: 814-865-4505 

Source: Penn State