Showing posts with label Great Observatories Origins Deep Survey (GOODS). Show all posts
Showing posts with label Great Observatories Origins Deep Survey (GOODS). Show all posts

Tuesday, January 19, 2021

Back to the Beginning: Probing the First Galaxies with Webb

A spectacular firestorm of star birth suddenly lit up the heavens and populated the first galaxies when the universe was less than five percent of its current age. This fiery flurry—possibly the cosmos' busiest star-forming period—occurred just a few hundred million years after the big bang. Soon, through the power of NASA's James Webb Space Telescope (JWST), astronomers will look back to that raucous, early period in a deep-sky survey to trace the formation and evolution of the first galaxies.

This is a Hubble Space Telescope view of a portion of GOODS-South, the southern field of a large deep-sky study by several observatories to trace the formation and evolution of galaxies. The image shows a rich tapestry of 7,500 galaxies stretching back through most of the universe's history. The farthest galaxies, a few of the very faint red specks, are seen as they appeared more than 13 billion years ago, or roughly 650 million years after the Big Bang. Soon, the James Webb Space Telescope will peer back even farther into this field to trace the formation and evolution of the very first galaxies. Credits: NASA, ESA, R. Windhorst, S. Cohen, M. Mechtley, and M. Rutkowski (Arizona State University, Tempe), R. O'Connell (University of Virginia), P. McCarthy (Carnegie Observatories), N. Hathi (University of California, Riverside), R. Ryan (University of California, Davis), H. Yan (Ohio State University), and A. Koekemoer (Space Telescope Science Institute). Hi-res image

Called JADES—the JWST Advanced Deep Extragalactic Survey—this large, ambitious survey totals nearly 800 hours of observing time. The survey takes advantage of Webb's sensitivity to infrared light, which has longer wavelengths than visible light and is invisible to the human eye.

"Galaxies, we think, begin building up in the first billion years after the big bang, and sort of reach adolescence at 1 to 2 billion years. We're trying to investigate those early periods," explained JADES teammate Daniel Eisenstein, a professor of astronomy at Harvard University.   "We must do this with an infrared-optimized telescope because the expansion of the universe causes light to increase in wavelength as it traverses the vast distance to reach us. So even though the stars are emitting light primarily in optical and ultraviolet wavelengths, that light is shifted quite relentlessly out into the infrared. Only Webb can get to the depth and sensitivity that's needed to study these early galaxies."

Joining Forces

The JADES survey is a collaboration of two Webb instrument teams granted Guaranteed Time Observations: the Near Infrared Camera (NIRCam) and the Near Infrared Spectrograph (NIRSpec) teams. The program combines the imaging of NIRCam and the spectroscopic capabilities of NIRSpec with Webb's Mid-Infrared Instrument (MIRI), which boasts both a camera and a spectrograph. Through the use of coordinated, parallel observations, the JADES team will get the best out of all three instruments. 

Scientists will then combine Webb's results with the deepest data from NASA's Hubble Space Telescope, NASA's Chandra X-ray Observatory, and the ground-based Atacama Large Millimeter/submillimeter Array and Jansky Very Large Array radio telescopes to produce an unprecedented view of the universe's very earliest galaxies. By studying galaxies across all these wavelengths, scientists will get a complete picture, allowing them to analyze the light of the galaxies' stars, the dust and the interstellar medium, and the supermassive black holes that are thought to reside within these galaxies. 

Discover how telescopes make it possible to look back in time and study the history of the universe, and how NASA’s James Webb Space Telescope will fill in new details on galaxy evolution over time. The earliest pages of cosmic history are blank, but Webb will allow us to look back farther in time than ever before, helping to fill in the lost pages of the universe’s story.  Credits: NASA, ESA, CSA, and L. Hustak and D. Player (STScI).
 
More than 13 billion years ago, during the Era of Reionization, the universe was a very different place. The gas between galaxies was largely opaque to energetic light, making it difficult to observe young galaxies. What allowed the universe to become completely ionized, or transparent, eventually leading to the "clear" conditions detected in much of the universe today? The James Webb Space Telescope will peer deep into space to gather more information about objects that existed during the Era of Reionization to help us understand this major transition in the history of the universe. Credits: NASA, ESA, and J. Kang (STScI).
Hi-res image

Studying Familiar Fields

The team chose two, previously well-studied fields from the Great Observatories Origins Deep Survey (GOODS) for their observations. GOODS united extremely deep observations from NASA's Spitzer, Hubble, and Chandra, as well as ESA's Herschel and XMM-Newton space telescopes, and from the most powerful ground-based facilities to survey the faintest light then detectable in the distant universe across the electromagnetic spectrum. The survey covered two large fields, GOODS-North and GOODS-South, which are located in the northern constellation Ursa Major and the southern constellation Fornax, respectively. GOODS-South also contains the Hubble Ultra Deep Field, which is to this day the deepest, most sensitive image of the sky ever taken with Hubble. Now, looking at the same areas, Webb will go even deeper.

"We chose these fields because they have such a great wealth of supporting information. They've been studied at many other wavelengths, so they were the logical ones to do," said Marcia Rieke, who co-leads the JADES Team with Pierre Ferruit of the European Space Agency (ESA). Rieke is also the principal investigator on Webb's NIRCam instrument and a professor of astronomy at the University of Arizona.

The team is also observing the two widely separated fields to study the differences between the number of galaxies at different distances in one field, as compared with the other.

Seeing the Formation of Galaxies, Stars and Black Holes

How rapidly galaxies form and assemble, and how quickly and where they form their stars are still open questions. Several ambitious goals of the JADES program include understanding the distribution of stellar mass in infant galaxies, as well as stellar luminosity, star-formation rates, and stellar age, size and composition. JADES will also analyze galaxies' nuclear activity, determine galaxy structure, and map gas movement over a wide range of distances.

Another goal of the program is understanding the properties of the first generation of black holes. Scientists have measured a tight relationship between the mass of a galaxy's central black hole and the mass of that galaxy's bulge, but how that occurs is currently only the stuff of models and speculation. The JADES team hopes to illuminate the nature of this relationship.

Scientists know these supermassive black holes were already in place with billions of solar masses less than 1 billion years after the big bang, which is less than 10 percent of the universe’s current age. But how such enormous black holes came about so early in the universe is very difficult to understand. 

"We hope to detect the primeval seeds of these monster black holes, the smaller black holes that formed soon after the big bang, and to understand what were their masses, how they were accreting mass, and where they were located," explained JADES teammate Roberto Maiolino, a member of ESA's NIRSpec Instrument Science Team and a professor of experimental astrophysics at the University of Cambridge in the United Kingdom. "For a long time, Webb will be the only facility to possibly detect and understand the processes that later on resulted in these monsters that were already created in the early universe."

Seeking the First Stars

Another mystery involves the gas between the galaxies, which astronomers know today is highly ionized and transparent. But in the first million years, it was not ionized—it was neutral gas that was opaque. How the transition from neutral to ionized gas—from opaque to transparent—occurred is something that scientists have been trying to understand for a long time.

"This transition is a fundamental phase change in the nature of the universe," said JADES teammate Andrew Bunker, another member of the ESA NIRSpec Instrument Science Team and a professor of astrophysics at the University of Oxford in the United Kingdom. "We want to understand what caused it. It could be that it's the light from very early galaxies and the first burst of star formation." 

The JADES team hopes to discover this first population of extremely massive, luminous and hot stars to form after the big bang. "That’s kind of one of the Holy Grails, to find the so-called Population III stars that formed from the hydrogen and helium of the big bang," explained Bunker. "People have been trying to do this for many decades and results have been inconclusive so far." 

Why Webb?

The extremely distant targets of the JADES team appear very small and faint, and their light is often completely shifted beyond optical wavelengths. For these reasons, these objects can only be observed with superlative infrared capability of a large, cold telescope. Webb was built specifically for this purpose; this was one of the major science cases driving its design. 

Because of Webb's sheer size, it will have spatial resolution in the infrared similar to what astronomers have enjoyed with Hubble. Webb will give them a much clearer view at long wavelengths than they have ever had before. 

Webb's ability to get simultaneous spectra of multiple objects at infrared wavelengths is another critical aspect of the JADES program. NIRSpec will be able to target more than 100 galaxies at one time, taking a spectrum of each.

Webb's much larger collecting area, its ability to observe fainter galaxies, and its capacity to simultaneously study multiple objects in a way that scientists have not been able to do before make ambitious, large surveys such as JADES possible for the first time.

"We tend to talk about projects like this in the context of theories and models that we have right now," said Rieke. "But I'm hoping that with Webb we'll find something that we haven't suspected at all—that there will be some new surprise—and that will be great fun!"

The James Webb Space Telescope will be the world's premier space science observatory when it launches in 2021. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

For more information about Webb, visit www.nasa.gov/webb.

Ann Jenkins / Christine Pulliam
Space Telescope Science Institute, Baltimore, Maryland
410-338-4488 / 410-338-4366

jenkins@stsci.edu cpulliam@stsci.edu

Editor: Lynn Jenner



Thursday, August 16, 2018

Hubble Paints Picture of the Evolving Universe

HDUV GOODS-North Field
Credits: NASA, ESA, P. Oesch (University of Geneva), and M. Montes (University of New South Wales)


Astronomers using the ultraviolet vision of NASA’s Hubble Space Telescope have captured one of the largest panoramic views of the fire and fury of star birth in the distant universe. The field features approximately 15,000 galaxies, about 12,000 of which are forming stars. Hubble’s ultraviolet vision opens a new window on the evolving universe, tracking the birth of stars over the last 11 billion years back to the cosmos’ busiest star-forming period, which happened about 3 billion years after the big bang.

Ultraviolet light has been the missing piece to the cosmic puzzle. Now, combined with infrared and visible-light data from Hubble and other space and ground-based telescopes, astronomers have assembled one of the most comprehensive portraits yet of the universe’s evolutionary history.

The image straddles the gap between the very distant galaxies, which can only be viewed in infrared light, and closer galaxies, which can be seen across a broad spectrum. The light from distant star-forming regions in remote galaxies started out as ultraviolet. However, the expansion of the universe has shifted the light into infrared wavelengths. By comparing images of star formation in the distant and nearby universe, astronomers glean a better understanding of how nearby galaxies grew from small clumps of hot, young stars long ago.

Because Earth’s atmosphere filters most ultraviolet light, Hubble can provide some of the most sensitive space-based ultraviolet observations possible.

The program, called the Hubble Deep UV (HDUV) Legacy Survey, extends and builds on the previous Hubble multi-wavelength data in the CANDELS-Deep (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) fields within the central part of the GOODS (The Great Observatories Origins Deep Survey) fields. This mosaic is 14 times the area of the Hubble Ultra Violet Ultra Deep Field released in 2014.

This image is a portion of the GOODS-North field, which is located in the northern constellation Ursa Major.

The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C.



Related Links

This site is not responsible for content found on external links



Contact

Ann Jenkins / Ray Villard
Space Telescope Science Institute, Baltimore, Maryland
410-338-4488 / 410-338-4514

jenkins@stsci.edu / villard@stsci.edu

Pascal Oesch
University of Geneva, Geneva, Switzerland
011-41-22-379-2466

pascal.oesch@unige.ch

Mireia Montes
University of New South Wales, Sydney, Australia
011-61-2-9385-6694

m.montes@unsw.edu.au




Saturday, October 15, 2016

Hubble Reveals Observable Universe Contains 10 Times More Galaxies Than Previously Thought

GOODS South
Credit: NASA, ESA, the GOODS Team, and M. Giavialisco (University of Massachusetts, Amherst)


The universe suddenly looks a lot more crowded, thanks to a deep-sky census assembled from surveys taken by NASA's Hubble Space Telescope and other observatories.

Astronomers came to the surprising conclusion that there are at least 10 times more galaxies in the observable universe than previously thought.

The results have clear implications for galaxy formation, and also helps shed light on an ancient astronomical paradox — why is the sky dark at night?

In analyzing the data, a team led by Christopher Conselice of the University of Nottingham, U.K., found that 10 times as many galaxies were packed into a given volume of space in the early universe than found today. Most of these galaxies were relatively small and faint, with masses similar to those of the satellite galaxies surrounding the Milky Way. As they merged to form larger galaxies the population density of galaxies in space dwindled. This means that galaxies are not evenly distributed throughout the universe's history, the research team reports in a paper to be published in The Astrophysical Journal.

"These results are powerful evidence that a significant galaxy evolution has taken place throughout the universe's history, which dramatically reduced the number of galaxies through mergers between them — thus reducing their total number. This gives us a verification of the so-called top-down formation of structure in the universe," explained Conselice.

One of the most fundamental questions in astronomy is that of just how many galaxies the universe contains. The landmark Hubble Deep Field, taken in the mid-1990s, gave the first real insight into the universe's galaxy population. Subsequent sensitive observations such as Hubble's Ultra Deep Field revealed a myriad of faint galaxies. This led to an estimate that the observable universe contained about 100 billion galaxies. The new research shows that this estimate is at least 10 times too low.

Conselice and his team reached this conclusion using deep-space images from Hubble and the already published data from other teams. They painstakingly converted the images into 3-D, in order to make accurate measurements of the number of galaxies at different epochs in the universe's history. In addition, they used new mathematical models, which allowed them to infer the existence of galaxies that the current generation of telescopes cannot observe. This led to the surprising conclusion that in order for the numbers of galaxies we now see and their masses to add up, there must be a further 90 percent of galaxies in the observable universe that are too faint and too far away to be seen with present-day telescopes. These myriad small faint galaxies from the early universe merged over time into the larger galaxies we can now observe.

"It boggles the mind that over 90 percent of the galaxies in the universe have yet to be studied. Who knows what interesting properties we will find when we discover these galaxies with future generations of telescopes? In the near future, the James Webb Space Telescope will be able to study these ultra-faint galaxies," said Conselice.

The decreasing number of galaxies as time progresses also contributes to the solution for Olbers' paradox (first formulated in the early 1800s by German astronomer Heinrich Wilhelm Olbers): Why is the sky dark at night if the universe contains an infinity of stars? The team came to the conclusion that indeed there actually is such an abundance of galaxies that, in principle, every patch in the sky contains part of a galaxy. However, starlight from the galaxies is invisible to the human eye and most modern telescopes due to the other known factors that reduce visible and ultraviolet light in the universe. Those factors are the reddening of light due to the expansion of space, the universe's dynamic nature, and the absorption of light by intergalactic dust and gas. All combined, this keeps the night sky dark to our vision.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C.


Contact

Ray Villard
Space Telescope Science Institute, Baltimore, Maryland
410-338-4514
villard@stsci.edu

Mathias Jäger
ESA/Hubble, Garching, Germany
011-49-176-6239-7500
mjaeger@partner.eso.org

Christopher Conselice
University of Nottingham, Nottingham, United Kingdom
011-44-115-951-5137
conselice@nottingham.ac.uk


Source: HubbleSite

Thursday, June 19, 2014

Hubble Finds That Dwarf Galaxies Formed More Than Their Fair Share of the Universe's Stars

GOODS Field Containing Distant Dwarf Galaxies Forming Stars at an Incredible Rate 
Photo Credit: NASA, ESA, the GOODS Team, and M. Giavalisco (University of Massachusetts, Amherst)
Science Credit: NASA, ESA, and H. Atek and J.-P. Kneib (EPFL, Switzerland)

They may be little, but they pack a big star-forming punch. New observations from NASA's Hubble Space Telescope show that small galaxies, also known as dwarf galaxies, are responsible for forming a large proportion of the universe's stars.

Studying this early epoch of the universe's history is critical to fully understanding how these stars formed and how galaxies have grown and evolved 2 billion to 6 billion years after the beginning of the universe. This result supports a decade-long investigation into whether there is a link between a galaxy's mass and its star-forming activity, and helps paint a consistent picture of events in the early universe.

"We already suspected these kinds of galaxies would contribute to the early wave of star formation, but this is the first time we've been able to measure the effect they actually had," said Hakim Atek of the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland, lead author of the study published in the June 19 online issue of The Astrophysical Journal. "They appear to have had a surprisingly huge role to play."

Previous studies of star-forming galaxies were restricted to the analysis of mid- or high-mass galaxies, leaving out the numerous dwarf galaxies that existed in this era of prolific star formation. Astronomers conducted a recent study using data from Hubble's Wide Field Camera 3 (WFC3) to take a further and significant step forward in understanding this formative era by examining a sample of starburst galaxies in the young universe. Starburst galaxies form stars at a furiously fast rate, far above what is considered by experts to be a normal rate of star formation.

The infrared capabilities of WFC3 have allowed astronomers to finally calculate how much these low-mass dwarf galaxies contributed to the star population in our universe.

"These galaxies are forming stars so quickly that they could actually double their entire mass of stars in only 150 million years — an incredibly short astronomical timescale," added co-author Jean-Paul Kneib, also of EPFL.

Researchers say such a mass gain would take most normal galaxies 1 billion to 3 billion years to accomplish.

In addition to adding new insight to how and where the stars in our universe formed, this finding may also help to unravel the secrets of galactic evolution. Galaxies evolve through a jumble of complex processes. As galaxies merge, they are consumed by newly formed stars that feed on their combined gases, and exploding stars and supermassive black holes emit galactic material — a process that depletes the mass of a galaxy.

It is unusual to find a galaxy in a state of starburst, which suggests to researchers that starburst galaxies are the result of an unusual incident in the past, such as a violent merger.

CONTACT

Ray Villard
Space Telescope Science Institute, Baltimore, Maryland
410-338-4514

villard@stsci.edu

J.D. Harrington
NASA Headquarters, Washington, D.C.
202-358-5241

j.d.harrington@nasa.gov

Source: HubbleSite