Abell 2256 (Labeled)
Credit: X-ray: Chandra: NASA/CXC/Univ. of Bolonga/K. Rajpurohit et al.; XMM-Newton: ESA/XMM-Newton/Univ. of Bolonga/K. Rajpurohit et al. Radio: LOFAR: LOFAR/ASTRON; GMRT: NCRA/TIFR/GMRT; VLA: NSF/NRAO/VLA; Optical/IR: Pan-STARRS
Astronomers have captured a spectacular, ongoing collision between at least three galaxy clusters. Data from NASA’s Chandra X-ray Observatory,
ESA’s (European Space Agency’s) XMM-Newton, and a trio of radio
telescopes is helping astronomers sort out what is happening in this
jumbled scene. Collisions and mergers like this are the main way that
galaxy clusters can grow into the gigantic cosmic edifices seen today.
These also act as the largest particle accelerators in the universe.
The giant galaxy cluster forming from this collision is Abell 2256, located 780 million light-years from Earth. This composite image of Abell 2256 combines X-rays from Chandra and XMM in blue with radio data collected by the Giant Metrewave Radio Telescope (GMRT), the Low Frequency Array (LOFAR), and the Karl G. Jansky Very Large Array (VLA) all in red, plus optical and infrared data from Pan-STARRs in white and pale yellow.
Astronomers studying this object are trying to tease out what has led to this unusual-looking structure. Each telescope tells a different part of the story. Galaxy clusters are some of the biggest objects in the universe containing hundreds or even thousands of individual galaxies. In addition, they contain enormous reservoirs of superheated gas, with temperatures of several million degrees Fahrenheit. Only X-ray telescopes like Chandra and XMM can see this hot gas. A labeled version of the figure shows gas from two of the galaxy clusters, with the third blended too closely to separate from the others.
The giant galaxy cluster forming from this collision is Abell 2256, located 780 million light-years from Earth. This composite image of Abell 2256 combines X-rays from Chandra and XMM in blue with radio data collected by the Giant Metrewave Radio Telescope (GMRT), the Low Frequency Array (LOFAR), and the Karl G. Jansky Very Large Array (VLA) all in red, plus optical and infrared data from Pan-STARRs in white and pale yellow.
Astronomers studying this object are trying to tease out what has led to this unusual-looking structure. Each telescope tells a different part of the story. Galaxy clusters are some of the biggest objects in the universe containing hundreds or even thousands of individual galaxies. In addition, they contain enormous reservoirs of superheated gas, with temperatures of several million degrees Fahrenheit. Only X-ray telescopes like Chandra and XMM can see this hot gas. A labeled version of the figure shows gas from two of the galaxy clusters, with the third blended too closely to separate from the others.
Paper III by Rajpurohit and collaborators will study the galaxies
producing radio waves in Abell 2256. This cluster contains an unusually
large number of such galaxies, possibly because the collision and merger
are triggering the growth of supermassive black holes and consequent
eruptions. More details about the LOFAR image of Abell 2256 will be
reported in an upcoming paper by Erik Osinga.
The full list of co-authors for papers I and II include researchers from the University of Bologna, Italy (Franco Vazza, Annalisa Bonafede, Andrea Botteon, Christopher J. Riseley, Paola Domínguez-Fernández, Chiara Stuardi, and Daniele Dallacasa); Leiden Observatory, Leiden University, the Netherlands (Erik Osinga, Reinout J. van Weeren, Timothy Shimwell, Huub Röttgering, and George Miley); Thüringer Landessternwarte, Tautenburg, Germany (Matthias Hoeft and Alexander Drabent); INAF-Istituto di Radio Astronomia, Bologna, Italy (Gianfranco Brunetti and Rossella Cassano); Hamburger Sternwarte, Germany (Denis Wittor, Marcus Brüggen, and Francesco de Gasperin); Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Italy (Marisa Brienza); Center for Astrophysics, Harvard | Smithsonian (William Forman); Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley (Sangeeta Rajpurohit); Physical Research Laboratory, Ahmedabad, India (Arvind Singh Rajpurohit); Universität Würzburg, Würzburg, Germany (Etienne Bonnassieux), and INAF–IASF Milano, Italy (Mariachiara Rossetti).
NASA's Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory's Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
The full list of co-authors for papers I and II include researchers from the University of Bologna, Italy (Franco Vazza, Annalisa Bonafede, Andrea Botteon, Christopher J. Riseley, Paola Domínguez-Fernández, Chiara Stuardi, and Daniele Dallacasa); Leiden Observatory, Leiden University, the Netherlands (Erik Osinga, Reinout J. van Weeren, Timothy Shimwell, Huub Röttgering, and George Miley); Thüringer Landessternwarte, Tautenburg, Germany (Matthias Hoeft and Alexander Drabent); INAF-Istituto di Radio Astronomia, Bologna, Italy (Gianfranco Brunetti and Rossella Cassano); Hamburger Sternwarte, Germany (Denis Wittor, Marcus Brüggen, and Francesco de Gasperin); Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Italy (Marisa Brienza); Center for Astrophysics, Harvard | Smithsonian (William Forman); Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley (Sangeeta Rajpurohit); Physical Research Laboratory, Ahmedabad, India (Arvind Singh Rajpurohit); Universität Würzburg, Würzburg, Germany (Etienne Bonnassieux), and INAF–IASF Milano, Italy (Mariachiara Rossetti).
NASA's Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory's Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Source: NASA’s Chandra X-ray Observatory
Visual Description:
This release features a composite image of at least three galaxy clusters colliding in a jumbled scene. The resulting giant galaxy cluster, known as Abell 2256, resembles a grainy, pixilated, sky blue cloud topped with licks of flaming red hair. The cloud is adorned with red shapes and streaks, and set against a black background heavily dotted with colorful specks. The image combines X-ray, radio, optical, and infrared data. In this release, the composite image is presented both with, and without, labels.
Near our lower left sits the oval-shaped, sky-blue cloud pixelated with white dots. This is the center of the combined galaxy cluster. The blue cloud shows enormous reservoirs of superheated gas, with temperatures of several million degrees Fahrenheit.
Shooting out of the giant cluster, angled toward our upper-middle right, is a straight, thin red line labeled C. This is a jet; a stream of particles blasting away from a giant black hole. A second, much shorter jet, labeled I, crosses the tip of the first jet near the right hand side of the image.
In the giant cluster, on the righthand side, are several irregular shapes. One, labeled A, resembles a bright white bean with a red outline. Beside it, labeled B, is a tangle of overlapping red shapes dangling out the bottom of the cloud. These are filaments, the result of jets interacting with gas. Three other irregular red filaments can be found to our left, just outside of the giant cluster.
At the upper right hand edge of the oval-shaped giant cluster are sweeping sheets of red, which resemble lapping flames or licks of red hair. These relics are the results of shockwaves, likely generated by the collision of gas from the different clusters.
Near our lower left sits the oval-shaped, sky-blue cloud pixelated with white dots. This is the center of the combined galaxy cluster. The blue cloud shows enormous reservoirs of superheated gas, with temperatures of several million degrees Fahrenheit.
Shooting out of the giant cluster, angled toward our upper-middle right, is a straight, thin red line labeled C. This is a jet; a stream of particles blasting away from a giant black hole. A second, much shorter jet, labeled I, crosses the tip of the first jet near the right hand side of the image.
In the giant cluster, on the righthand side, are several irregular shapes. One, labeled A, resembles a bright white bean with a red outline. Beside it, labeled B, is a tangle of overlapping red shapes dangling out the bottom of the cloud. These are filaments, the result of jets interacting with gas. Three other irregular red filaments can be found to our left, just outside of the giant cluster.
At the upper right hand edge of the oval-shaped giant cluster are sweeping sheets of red, which resemble lapping flames or licks of red hair. These relics are the results of shockwaves, likely generated by the collision of gas from the different clusters.
Fast Facts for (Abell 2256):
Scale: Image is about 22.5 arcmin (5.6 million light-years) across.
Category: Groups & Clusters of Galaxies
Coordinates (J2000): RA 17h 03m 43.5s | Dec +78° 43´ 03"
Constellation: Ursa Minor
Observation Dates: 4 observations from Aug 14 to Sep 26, 2014
Observation Time: 49 hours 55 minutes (2 days 1 hours)
Obs. ID: 17129, 16514, 16515, 17516
Instrument: ACIS
References: Rajpurohit, K., et al., 2022, ApJ, 927, 80; arXiv:2111.04449 (Paper I); Rajpurohit, K., et al., 2022, Accepted, A&A; arXiv:2209.03288 (Paper II)
Color Code: X-ray: blue; Radio: red, white; Optical: red, green, blue.
Distance Estimate: About 780 million light-years
Distance Estimate: About 780 million light-years