The Tarantula Nebula as seen on SOFIA’s visible light guide camera during observations from Christchurch, New Zealand.
Credits: NASA/SOFIA/Nicholas A. Veronico
To have a full picture of the lives of massive stars, researchers need to study them in all stages – from when they’re a mass of unformed gas and dust, to their often dynamic end-of-life explosions.
NASA's flying telescope, the Stratospheric Observatory for Infrared
Astronomy, or SOFIA, is particularly well-suited for studying the
pre-natal stage of stellar development in star-forming regions, such as
the Tarantula Nebula, a giant mass of gas and dust located within the Large Magellanic Cloud, or LMC.
Researchers from the Minnesota Institute for Astrophysics, led by
Michael Gordon, went aboard SOFIA to identify and characterize the
brightness, ages and dust content of three young star-forming regions
within the LMC.
“The Large Magellanic Cloud has always been an
interesting and excellent laboratory for massive star formation,” said
Gordon. “The chemical properties of star-forming regions in the LMC are
significantly different than in the Milky Way, which means the stars
forming there potentially mirror the conditions of star formation in
dwarf galaxies at earlier times in the universe.”
In our galactic neighborhood, which includes the LMC, massive stars –
generally classified as stars more than eight times the mass of Earth’s
Sun – are believed to form exclusively in very dense molecular clouds.
The dark dust and gas absorb background light, which prevents
traditional optical telescopes from imaging these areas.
“The mid-infrared capabilities of SOFIA are ideal for piercing
through infrared dark clouds to capture images of potential massive
star-forming regions,” Gordon said.
The observations were completed with the Faint Object infrared Camera
for the SOFIA Telescope, known as FORCAST. This infrared camera also
performs spectroscopy, which identifies the elements present.
Astronomers study stars evolving in both the optical and the infrared
to learn more about the photosphere, and the population of stars in the
photosphere. The mid- and far-infrared data from SOFIA reaffirm dust
temperature and mass accretion rates that are consistent with prior
research of the LMC.
"We want to combine as many observations as we can from the optical, as seen through images from the Hubble Space Telescope, all the way out to the far infrared, imaged using the Spitzer Space Telescope and the Herschel Space Observatory,
to get as broad a picture as possible," Gordon continued. "No previous
researchers have used FORCAST’s wavelength range to effectively study
massive star formations. We needed SOFIA to fill in the 20- to 40-micron
gap to give us the whole picture of what’s taking place."
In summer 2017, further research of the Tarantula Nebula was accomplished aboard SOFIA during the observatory’s six-week science campaign
operating from Christchurch, New Zealand, to study the sky in the
Southern Hemisphere. Gordon and his team are hopeful that when analyzed,
data obtained from the Christchurch flights will reveal previously
undiscovered young massive stars forming in the region, which have never
been observed outside of the Milky Way.
SOFIA is a Boeing 747SP jetliner modified to carry a 100-inch
diameter telescope. It is a joint project of NASA and the German
Aerospace Center, DLR. NASA’s Ames Research Center in California’s
Silicon Valley manages the SOFIA program, science and mission operations
in cooperation with the Universities Space Research Association
headquartered in Columbia, Maryland, and the German SOFIA Institute
(DSI) at the University of Stuttgart. The aircraft is based at NASA’s
Armstrong Flight Research Center's Hangar 703, in Palmdale, California.
Media Point of Contact
Nicholas A. Veronico
NVeronico@sofia.usra.edu • SOFIA Science Center
NASA Ames Research Center, Moffett Field, California
Source: NASA/SOFIA
Media Point of Contact
Nicholas A. Veronico
NVeronico@sofia.usra.edu • SOFIA Science Center
NASA Ames Research Center, Moffett Field, California
Editor: Kassandra Bell