Showing posts with label coronal mass ejections. Show all posts
Showing posts with label coronal mass ejections. Show all posts

Tuesday, March 10, 2015

Nanodust Particles in the Interplanetary Medium

The STEREO (Solar TErrestrial RElations Observatory) spacecraft in an artist's conception, also showing a coronal mass ejection. Astronomers have discovered that these ejections accelerate and concentrate nanodust particles in the interplanetary medium, a conclusion derived from STEREO instruments that observed an increase in the rate of nanodust impacts on the spacecraft. Credit: NASA


Dust particles smaller than about a wavelength of light are abundant in our solar system, created by collisions between asteroids and from the evaporation of comets. As they scatter sunlight, these particles produce the zodiacal light, the glow in the night sky that stretches along the zodiac. The zodiacal light is most easily seen after sunset or before sunrise, though it is faint enough that even moonlight can mask it. Nanodust particles are about ten times smaller than normal dust -- too small to efficiently scatter sunlight. They can be sensed by spacecraft, however, because when they impact the spacecraft they generate puffs of ionized gas and electrical pulses that instruments can detect. The Solar TErrestrial RElations Observatory (STEREO) spacecraft has been detecting nanodust pulses since its launch in 2007, and previous studies of these events have confirmed the general picture that these tiny particles are an important constituent of the solar system.

The corona of the Sun, the hot (over a million kelvin), gaseous outer region of its atmosphere, is threaded by intense magnetic fields. The fields loop and twist, stirred by the motions of the hot gas in the underlying atmosphere. When these loops snap, they eject energetic charged particles into the solar wind in events called coronal mass ejections. Nanodust particles carry a slight electric charge, and because of that, the solar wind should be able to redistribute them as it blows toward Earth through interplanetary space. CfA astronomer Gaetan Le Chat and his colleagues have analyzed seven years of data on nanodust obtained from the STEREO spacecraft and found that coronal mass ejections do indeed appear to accelerate and concentrate nanodust particles, leading to increased rates of impact on the spacecraft during periods of solar activity. The scientists also noted longer-term, regular variations in the rate of nanodust impacts, and propose from the periodic behavior that the gravitational influences of Mercury and Venus are responsible, perhaps by perturbing the tails of comets that have passed through the inner solar system, leading to a higher production of nanodust.

Reference(s):
 
"On the Effect of the Interplanetary Medium on Nanodust Observations by the Solar Terrestrial Relations Observatory," G. Le Chat, K. Issautier, A. Zaslavsky, F. Pantellini, N. Meyer-Vernet, S. Belheouane, and M. Maksimovic, Solar Physics, 2015 (in press).




Friday, September 26, 2014

How NASA Watches CMEs

Two main types of explosions occur on the sun: solar flares and coronal mass ejections. Unlike the energy and x-rays produced in a solar flare – which can reach Earth at the speed of light in eight minutes – coronal mass ejections are giant clouds of solar material that take one to three days to reach Earth. Once at Earth, these ejections, also called CMEs, can impact satellites in space or interfere with radio communications. During CME Week from Sept. 22 to 26, 2014, we explore different aspects of these giant eruptions that surge out from the star we live with.


Space weather models combined with real time observations help scientists track CMEs. These images were produced from a model known as ENLIL named after the Sumerian storm god. It shows the journey of a CME on March 5, 2013, as it moved toward Mars.  Image Credit: NASA/Goddard/SWRC/CCMC. Download video

A March 5, 2013, CME as seen by the Solar and Heliospheric Observatory. Combining the information gleaned from such imagery with state-of-the-art models helps scientists better understand how CMEs move toward, and affect, Earth. Image Credit: ESA/NASA/SOHO/Jhelioviewer 

Those who study Earth's weather have a luxury of data points to study. From thousands of weather stations measuring temperature and rainfall to satellites tracking storm fronts up in space, meteorologists can watch detailed maps of the weather as it sweeps across land or sea.

Compared to this, the study of space weather – including CMEs – is a much younger science, with far fewer observatories available. However, our resources have grown dramatically in the last decade: NASA currently flies 18 missions to study the sun's effects at Earth and on the entire solar system, a field known as heliophysics, and additionally launches numerous short-flight rockets for observations of solar impacts in and above Earth's atmosphere. Coupled with improved computer modeling, keeping an eye on – and getting a better understanding of – CMEs has taken a giant leap forward in the 21st century.

"Over the past ten years, we have had a major breakthrough in understanding space weather," said Antti Pulkkinen a space weather scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "We can now track the basic properties of CMEs. When our solar observatories see a CME, we can tell what direction it's going in and how fast it's traveling."

Improved observations combined with improved models has led to hybrid descriptions of a CME, relying partially on computer simulations and partially on actual observations. NASA houses a collection of space weather models available for public access at the Community Coordinated Modeling Center at Goddard. Together with observations they can provide a holistic picture of any given CME.

For example, NASA's Solar and Terrestrial Relations Observatory, or STEREO, might see a CME erupt on the sun. When that imagery is combined with observations from the European Space Agency and NASA's Solar and Heliospheric Observatory, or SOHO, scientists can create a 3-dimensional picture of the giant cloud. Scientists then input this data into a model and then track how the CME unfolded and spread through space until it passed by NASA observatories closer to Earth. These observatories can directly measure the magnetic fields and speed of the CME as it passes by, as well as see how it affected Earth's own magnetic fields – the magnetosphere.

By gathering data from numerous observatories, scientists can create models and explore what-if scenarios about what would happen near Earth due to a given CME. Watch the video to learn more about what scientists can see in these models. Image Credit: NASA/Bridgman/Duberstein. Download video

Such information on the CME's entire path opens the door to understanding why any given characteristic of the CME near the sun might lead to a given effect near Earth. Each additional piece of the puzzle helps us better understand just what causes these giant eruptions -- and whether or not any particular CME could pose a hazard to astronauts as well as technology in space and on the ground.

Related Links


Karen C. Fox
NASA's Goddard Space Flight Center, Greenbelt, Md.

Thursday, September 25, 2014

Mapping the Journey of a Giant Coronal Mass Ejection

Two main types of explosions occur on the sun: solar flares and coronal mass ejections. Unlike the energy and X-rays produced in a solar flare – which can reach Earth at the speed of light in eight minutes – coronal mass ejections are giant clouds of solar material that take one to three days to reach Earth. Once at Earth, these ejections, also called CMEs, can impact satellites in space or interfere with radio communications. During CME Week from Sept. 22 to 26, 2014, we explore different aspects of these giant eruptions that surge out from our closest star.


Three NASA observatories work together to help scientists track the journey of a massive coronal mass ejection, or CME, in July 2012. Image Credit: NASA/SDO/STEREO/ESA/SOHO/Wiessinger. Download video

On July 23, 2012, a massive cloud of solar material erupted off the sun's right side, zooming out into space. It soon passed one of NASA's Solar Terrestrial Relations Observatory, or STEREO, spacecraft, which clocked the CME as traveling between 1,800 and 2,200 miles per second as it left the sun. This was the fastest CME ever observed by STEREO.

Two other observatories – NASA's Solar Dynamics Observatory and the joint European Space Agency/NASA Solar and Heliospheric Observatory -- witnessed the eruption as well. The July 2012 CME didn't move toward Earth, but watching an unusually strong CME like this gives scientists an opportunity to observe how these events originate and travel through space.

STEREO's unique viewpoint from the sides of the sun combined with the other two observatories watching from closer to Earth.Together they helped scientists create models of the entire July 2012 event. They learned that an earlier, smaller CME helped clear the path for the larger event, thus contributing to its unusual speed.

Such data helps advance our understanding of what causes CMEs and improves modeling of similar CMEs that could be Earth-directed.

Watch the movie to see how NASA's solar-observing missions worked together to track this CME.

Related Links

Karen C. Fox
NASA's Goddard Space Flight Center, Greenbelt, Md.

Monday, September 16, 2013

Fire-Breather

 
A fiery solar explosion
Copyrigh:t SOHO (ESA/NASA)/S. Hill

Like a dragon breathing fire, a powerful blast of plasma erupts from the Sun in this colourised view of a ‘coronal mass ejection’. 

These huge clouds of magnetised plasma are ejected from the Sun’s atmosphere – the corona – and launched into interplanetary space. Millions of tonnes of gas race away from the Sun at several million kilometres per hour. 

This image shows an event observed by the SOHO satellite on 4 January 2002, coloured to indicate the intensity of the matter being ejected by the Sun. White represents the greatest intensity, red/orange somewhat less, and blue the least. 

An extreme-ultraviolet view is superimposed to show the size and active regions of the Sun that day.
The shaded blue disc surrounding the Sun at the centre of the image deliberately blots out direct sunlight to allow study of the details in the corona. 

When ejections like this hit planet Earth, spectacular natural light displays – aurora – can be triggered over the poles. In the most extreme events, they can lead to geomagnetic storms that can result in regional power outages and communications blackouts.

This image is featured in a SOHO ‘The Sun as Art’ portfolio in 2002. The original SOHO image can be viewed here. 


Source: ESA


Wednesday, August 21, 2013

NASA Spacecraft Capture an Earth Directed Coronal Mass Ejection

The SOHO LASCO C2 instrument captured this image of the Earth-directed CME. SOHO's coronographs are able to take images of the solar corona by blocking the light coming directly from the Sun with an occulter disk. The location of the actual sun is shown with an image taken by SDO. Image Credit: ESA & NASA/SOHO, SDO
The SOHO LASCO C3 instrument captured this coronographic image of the Earth-directed CME. The bright white object to the right is the planet Mercury. Image Credit: ESA & NASA/SOHO

On August 20, 2013 at 4:24 am EDT, the sun erupted with an Earth-directed coronal mass ejection or CME, a solar phenomenon which can send billions of tons of particles into space that can reach Earth one to three days later. These particles cannot travel through the atmosphere to harm humans on Earth, but they can affect electronic systems in satellites and on the ground.

Experimental NASA research models, based on observations from NASA’s Solar Terrestrial Relations Observatory show that the CME left the sun at speeds of around 570 miles per second, which is a fairly typical speed for CMEs.

Earth-directed CMEs can cause a space weather phenomenon called a geomagnetic storm, which occurs when they funnel energy into Earth's magnetic envelope, the magnetosphere, for an extended period of time. The CME’s magnetic fields peel back the outermost layers of Earth's fields changing their very shape. In the past, geomagnetic storms caused by CMEs of this strength have usually been mild.

Magnetic storms can degrade communication signals and cause unexpected electrical surges in power grids. They also can cause aurora.

NOAA's Space Weather Prediction Center (http://swpc.noaa.gov) is the U.S. government's official source for space weather forecasts, alerts, watches and warnings.

Updates will be provided if needed.

Susan Hendrix
NASA's Goddard Space Flight Center, Greenbelt, Md. 


Tuesday, May 28, 2013

Sun Releases Slow CME

These three images show a coronal mass ejection, or CME, erupting into space on May 26, 2013. The pictures were captured by the ESA/NASA Solar Heliospheric Observatory with its coronagraph, which blocks out the bright light of the sun to better see its dimmer atmosphere, the corona. Credit: ESA&NASA/SOHO.  › View larger - › View unlabeled version

On May 26, 2013 at 3:24 p.m. EDT, the sun erupted with a coronal mass ejection or CME, a solar phenomenon that can send billions of tons of solar particles into space that can affect electronic systems in satellites. Experimental NASA research models show that the CME was not Earth-directed and it left the sun at 550 miles per second. It may, however, pass by STEREO A and its mission operators have been notified. The spacecraft can be put into safe mode if warranted.

NOAA's Space Weather Prediction Center (http://swpc.noaa.gov) is the U.S. government's official source for space weather forecasts, alerts, watches and warnings.

Updates will be provided as needed.


Related Links
› Frequently Asked Questions Regarding Space Weather
› View Other Past Solar Activity
Karen C. Fox
NASA's Goddard Space Flight Center, Greenbelt, MD.


Tuesday, May 07, 2013

Destination Earth

Destination Earth
Copyright: SOHO (ESA/NASA)/S. Hill

 Solar science meets art in this unique portrait of a solar storm heading straight for Earth. 

The image is based on data collected by the ESA/NASA SOHO space observatory during a coronal mass ejection, when a huge cloud of magnetised plasma was ejected from the Sun’s atmosphere and launched towards Earth. 

The image shows an extreme-ultraviolet view of the solar disc superimposed on a wide-field view of the surrounding solar environment as the storm leaps away from the Sun. 

Two particularly bright regions on the Sun’s face indicate active regions with looping magnetic fields. Towards the left a filament of dense, cool gas appears to snake its way across the surface.

As a result of the ‘running difference’ technique used to process the images, the scene creates a feeling of rapid change as the solar storm expands outwards on all sides of the Sun and races towards us. 

The running difference technique takes sequential snapshots and compares them such that the strongest and most persistent features are isolated and highlighted. 

Note that the solar disc is not to scale with the background image. SOHO images are usually shown with a gap of around 3 solar radii from the edge of the Sun’s disc, with an occulter blocking out the intense light from the Sun in order to reveal the faint details of the corona. 

Coronal mass ejections like the one portrayed here blast away billions of tonnes of matter from the Sun at millions of kilometres per hour. By the time this particular event engulfed Earth two days later, the eruption was some 50 million kilometres wide. 

This image featured in a SOHO ‘The Sun as Art’ portfolio in 2002. 

Source: ESA




Saturday, March 16, 2013

Earth-Directed Coronal Mass Ejection From the Sun

The ESA and NASA Solar Heliospheric Observatory (SOHO) captured these images of the sun spitting out a coronal mass ejection (CME) on March 15, 2013, from 3:24 to 4:00 a.m. EDT. This type of image is known as a coronagraph, since a disk is placed over the sun to better see the dimmer atmosphere around it, called the corona. Credit: ESA&NASA/SOHO.  › View larger

On March 15, 2013, at 2:54 a.m. EDT, the sun erupted with an Earth-directed coronal mass ejection (CME), a solar phenomenon that can send billions of tons of solar particles into space and can reach Earth one to three days later and affect electronic systems in satellites and on the ground. Experimental NASA research models, based on observations from the Solar Terrestrial Relations Observatory (STEREO) and ESA/NASA’s Solar and Heliospheric Observatory, show that the CME left the sun at speeds of around 900 miles per second, which is a fairly fast speed for CMEs. Historically, CMEs at this speed have caused mild to moderate effects at Earth.

The NASA research models also show that the CME may pass by the Spitzer and Messenger spacecraft. NASA has notified their mission operators. There is, however, only minor particle radiation associated with this event, which is what would normally concern operators of interplanetary spacecraft since the particles can trip on board computer electronics.

Not to be confused with a solar flare, a CME is a solar phenomenon that can send solar particles into space and reach Earth one to three days later. Earth-directed CMEs can cause a space weather phenomenon called a geomagnetic storm, which occurs when they connect with the outside of the Earth's magnetic envelope, the magnetosphere, for an extended period of time. In the past, geomagnetic storms caused by CMEs such as this one have usually been of mild to medium strength.

NOAA's Space Weather Prediction Center (http://swpc.noaa.gov) is the United States Government official source for space weather forecasts, alerts, watches and warnings.

Updates will be provided if needed.


What is a CME?

For answers to this and other space weather questions, please visit the Spaceweather Frequently Asked Questions page.

Related Link
› View Past Solar Activity
Karen C. Fox
NASA Goddard Space Flight Center, Greenbelt, MD 

Thursday, September 20, 2012

NASA's Solar Fleet Peers Into Coronal Cavities

Scientists want to understand what causes giant explosions in the sun's atmosphere, the corona, such as this one. The eruptions are called coronal mass ejections or CMEs and they can travel toward Earth to disrupt human technologies in space. To better understand the forces at work, a team of researchers used NASA data to study a precursor of CMEs called coronal cavities. Credit: NASA/Solar Dynamics Observatory (SDO) . View Larger

The sun's atmosphere dances. Giant columns of solar material – made of gas so hot that many of the electrons have been scorched off the atoms, turning it into a form of magnetized matter we call plasma – leap off the sun's surface, jumping and twisting. Sometimes these prominences of solar material, shoot off, escaping completely into space, other times they fall back down under their own weight. 

The prominences are sometimes also the inner structure of a larger formation, appearing from the side almost as the filament inside a large light bulb. The bright structure around and above that light bulb is called a streamer, and the inside "empty" area is called a coronal prominence cavity. 

 Such structures are but one of many that the roiling magnetic fields and million-degree plasma create in the sun's atmosphere, the corona, but they are an important one as they can be the starting point of what's called a coronal mass ejection, or CME. CMEs are billion-ton clouds of material from the sun’s atmosphere that erupt out into the solar system and can interfere with satellites and radio communications near Earth when they head our way.

 "We don't really know what gets these CMEs going," says Terry Kucera, a solar scientist at NASA's Goddard Space Flight Center in Greenbelt, Md. "So we want to understand their structure before they even erupt, because then we might have a better clue about why it's erupting and perhaps even get some advance warning on when they will erupt."

 Kucera and her colleagues have published a paper in the Sept. 20, 2012, issue of The Astrophysical Journal on the temperatures of the coronal cavities. This is the third in a series of papers -- the first discussed cavity geometry and the second its density -- collating and analyzing as much data as possible from a cavity that appeared over the upper left horizon of the sun on Aug. 9, 2007 (below). By understanding these three aspects of the cavities, that is the shape, density and temperature, scientists can better understand the space weather that can disrupt technologies near Earth. 

 The faint oval hovering above the upper left limb of the sun in this picture is known as a coronal cavity. NASA’s Solar and Terrestrial Relations Observatory (STEREO) captured this image on Aug. 9, 2007. A team of scientists extensively studied this particular cavity in order to understand more about the structure and magnetic fields in the sun's atmosphere. Credit: NASA/STEREO. View Larger

 The Aug. 9 cavity lay at a fortuitous angle that maximized observations of the cavity itself, as opposed to the prominence at its base or the surrounding plasma. Together the papers describe a cavity in the shape of a croissant, with a giant inner tube of looping magnetic fields -- think something like a slinky -- helping to define its shape. The cavity appears to be 30% less dense than the streamer surrounding it, and the temperatures vary greatly throughout the cavity, but on average range from 1.4 million to 1.7 million Celsius (2.5 to 3 million Fahrenheit), increasing with height.

 Trying to describe a cavity, a space that appears empty from our viewpoint, from 93 million miles away is naturally a tricky business. "Our first objective was to completely pin down the morphology," says Sarah Gibson, a solar scientist at the High Altitude Observatory at the National Center for Atmospheric Research (NCAR) in Boulder, Colo. who was an author on all three cavity papers. "When you see such a crisp clean shape like this, it’s not an accident. That shape is telling you something about the physics of the magnetic fields creating it, and understanding those magnetic fields can also help us understand what’s at the heart of CMEs."

 To do this, the team collected as much data from as many instruments from as many perspectives as they could, including observations from NASA’s Solar Terrestrial Relations Observatory (STEREO), ESA and NASA’s Solar and Heliospheric Observatory (SOHO), the JAXA/NASA mission Hinode, and NCAR's Mauna Loa Solar Observatory.

 They collected this information for the cavity’s entire trip across the face of the sun along with the sun’s rotation. Figuring out, for example, why the cavity was visible on the left side of the sun but couldn’t be seen as well on the right held important clues about the structure’s orientation, suggesting a tunnel shape that could be viewed head on from one perspective, but was misaligned for proper viewing from the other. The cavity itself looked like a tunnel in a crescent shape, not unlike a hollow croissant. Magnetic fields loop through the croissant in giant circles to support the shape, the way a slinky might look if it were narrower on the ends and tall in the middle – the entire thing draped in a sheath of thick plasma. The paper describing this three-dimensional morphology appeared in The Astrophysical Journal on Dec. 1, 2010.

 Next up, for the second paper, was the cavity’s density. Figuring out density and temperature was a trickier prospect since one’s point of view of the sun is inherently limited. Because the sun’s corona is partially transparent, it is difficult to tease out differences of density and temperature along one’s line of sight; all the radiation from a given line hits an instrument at the same time in a jumble, information from one area superimposed upon every other.

 Using a variety of techniques to tease density out from temperature, the team was able to determine that the cavity was 30% less than that of the surrounding streamer. This means that there is, in fact, quite a bit of material in the cavity. It simply appears dim to our eyes when compared with the denser, brighter areas nearby. The paper on the cavity’s density appeared in The Astrophysical Journal on May 20, 2011.

 "With the morphology and the density determined, we had found two of the main characteristics of the cavity, so next we focused on temperature," says Kucera. "And it turned out to be a much more complicated problem. We wanted to know if it was hotter or cooler than the surrounding material – the answer is that it is both."

 Ultimately, what Kucera and her colleagues found was that the temperature of the cavity was not – on average – hotter or cooler than the surrounding plasma.

 However, it was much more varied, with hotter and cooler areas that Kucera thinks link the much colder 10,000 degrees Celsius (17,000 F) prominence at the bottom to the million to two million degrees Celsius (1.8 million to 3.6 million degrees Fahrenheit) corona at the top. Other observations of cavities show that cavity features are constantly in motion creating a complicated flow pattern that the team would like to study further.

 While these three science papers focused on just the one cavity from 2007, the scientists have already begun comparing this test case to other cavities and find that the characteristics are fairly consistent. More recent cavities can also be studied using the high-resolution images from NASA’s Solar Dynamics Observatory (SDO), which launched in 2010.

 "Our point with all of these research projects into what might seem like side streets, is ultimately to figure out the physics of magnetic fields in the corona," says Gibson. "Sometimes these cavities can be stable for days and weeks, but then suddenly erupt into a CME. We want to understand how that happens. We’re accessing so much data, so it’s an exciting time – with all these observations, our understanding is coming together to form a consistent story."

Related Links - NASA's Solar Fleet

Karen C. Fox