Showing posts with label Cosmic Web Imager (CWI). Show all posts
Showing posts with label Cosmic Web Imager (CWI). Show all posts

Thursday, July 04, 2019

Spiraling Filaments Feed Young Galaxies

Artist's impression of a growing galaxy shows gas spiraling in toward the center. new observations from the keck cosmic web imager provide the best evidence yet that cold gas spirals directly into growing galaxies via filamentous structures. much of the gas ends up being converted into stars. Image credit: Adam Makarenko/W. M. Keck Observatory

New data from W. M. Keck Observatory show gas directly spiraling into growing galaxies 

Maunakea, Hawaii – Galaxies grow by accumulating gas from their surroundings and converting it to stars, but the details of this process have remained murky. New observations, made using the Keck Cosmic Web Imager (KCWI) at W. M. Keck Observatory in Hawaii, now provide the clearest, most direct evidence yet that filaments of cool gas spiral into young galaxies, supplying the fuel for stars.

“For the first time, we are seeing filaments of gas directly spiral into a galaxy. It’s like a pipeline going straight in,” says Christopher Martin, a professor of physics at Caltech and lead author of a new paper appearing in the July 1 issue of the journal Nature Astronomy. “This pipeline of gas sustains star formation, explaining how galaxies can make stars on very fast timescales.”

For years, astronomers have debated exactly how gas makes its way to the center of galaxies. Does it heat up dramatically as it collides with the surrounding hot gas? Or does it stream in along thin dense filaments, remaining relatively cold? 

“Modern theory suggests that the answer is probably a mix of both, but proving the existence of these cold streams of gas had remained a major challenge until now,” says co-author Donal O’Sullivan (MS ’15), a PhD student in Martin’s group who built part of KCWI.

KCWI, designed and built at Caltech, is a state-of-the-art spectral imaging camera. Called an integral-field unit spectrograph, it allows astronomers to take images such that every pixel in the image contains a dispersed spectrum of light. Installed at Keck Observatory in early 2017, KCWI is the successor to the Cosmic Web Imager (CWI), an instrument that has operated at Palomar Observatory near San Diego since 2010. KCWI has eight times the spatial resolution and 10 times the sensitivity of CWI. 

“The main driver for building KCWI was understanding and characterizing the cosmic web, but the instrument is very flexible, and scientists have used it, among other things, to study the nature of dark matter, to investigate black holes, and to refine our understanding of star formation,” says co-author Mateusz (Matt) Matuszewski (MS ’02, PhD ’12), a senior instrument scientist at Caltech.

The question of how galaxies and stars form out of a network of wispy filaments in space—what is known as the cosmic web—has fascinated Martin since he was a graduate student. To find answers, he led the teams that built both CWI and KCWI. In 2017, Martin and his team used KCWI to acquire data on two active galaxies known as quasars, named UM 287 and CSO 38, but it was not the quasars themselves they wanted to study.

Nearby each of these two quasars is a giant nebula, larger than the Milky Way and visible thanks to the strong illumination of the quasars. By looking at light emitted by hydrogen in the nebulas—specifically an atomic emission line called hydrogen Lyman-alpha—they were able to map the velocity of the gas. From previous observations at Palomar, the team already knew there were signs of rotation in the nebulas, but the Keck Observatory data revealed much more.

“When we used Palomar’s CWI previously, we were able to see what looked like a rotating disk of gas, but we couldn’t make out any filaments,” says O’Sullivan. “Now, with the increase in sensitivity and resolution with KCWI, we have more sophisticated models and can see that these objects are being fed by gas flowing in from attached filaments, which is strong evidence that the cosmic web is connected to and fueling this disk.”

Martin and colleagues developed a mathematical model to explain the velocities they were seeing in the gas and tested it on UM287 and CSO38 as well as on a simulated galaxy.

“It took us more than a year to come up with the mathematical model to explain the radial flow of the gas,” says Martin. “Once we did, we were shocked by how well the model works.”

The findings provide the best evidence to date for the cold-flow model of galaxy formation, which basically states that cool gas can flow directly into forming galaxies, where it is converted into stars. Before this model came into popularity, researchers had proposed that galaxies pull in gas and heat it up to extremely high temperatures. From there, the gas was thought to gradually cool, providing a steady but slow supply of fuel for stars.

In 1996, research from Caltech’s Charles (Chuck) Steidel, the Lee A. DuBridge Professor of Astronomy and a co-author of the new study, threw this model into question. He and his colleagues showed that distant galaxies produce stars at a very high rate—too fast to be accounted for by the slow settling and cooling of hot gas that was a favored model for young galaxy fueling.

“Through the years, we’ve acquired more and more evidence for the cold-flow model,” says Martin. “We have nicknamed our new version of the model the ‘cold-flow inspiral,’ since we see the spiraling pattern in the gas.”

“These type of measurements are exactly the kind of science we want to do with KCWI,” says John O’Meara, Keck Observatory chief scientist. “We combine the power of Keck’s telescope size, powerful instrumentation, and an amazing astronomical site to push the boundaries of what’s possible to observe. It’s very exciting to see this result in particular, since directly observing inflows has been something of a missing link in our ability to test models of galaxy formation and evolution. I can’t wait to see what’s coming next.”

The new study, titled, “Multi-Filament Inflows Fuel Young Star Forming Galaxies,” was funded by the National Science Foundation (NSF), Keck Observatory, Caltech, and the European Research Council. The galaxy simulations were performed at NASA Advanced Supercomputing at NASA Ames Research Center. Other Caltech authors include former postdoc Erika Hamden, now at the University of Arizona; Patrick Morrissey, a visitor in space astrophysics who also works at JPL, which is managed by Caltech for NASA; and research scientist James D. (Don) Neill.




About KCWI

The Keck Cosmic Web Imager (KCWI) is designed to provide visible band, integral field spectroscopy with moderate to high spectral resolution formats and excellent sky-subtraction. The astronomical seeing and large aperture of the telescope will enable studies of the connection between galaxies and the gas in their dark matter halos, stellar relics, star clusters, and lensed galaxies. Support for this project was provided by Caltech, Gordon and Betty Moore Foundation, the Heising-Simons Foundation, Mt. Cuba Astronomical Foundation, NSF, and other Friends of Keck Observatory.



About W.M.Keck Observatory

The W. M. Keck Observatory telescopes are the most scientifically productive on Earth. The two, 10-meter optical/infrared telescopes atop Maunakea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometers, and world-leading laser guide star adaptive optics systems. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors recognize and acknowledge the very significant cultural role that the summit of Maunakea has always had within the Native Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.


Saturday, August 08, 2015

Caltech Astronomers Unveil a Distant Protogalaxy Connected to the Cosmic Web

Using the Cosmic Web Imager at Palomar Observatory to study a system with two quasars 10 billion light years away, a team of astronomers led by Caltech has unveiled a giant swirling disk of gas—a protogalaxy, or galaxy in the making—being fed cool gas by a filament of the cosmic web. Credit: Caltech Academic Media Technologies.

This picture combines a visible light image of the distant system with data from the Cosmic Web Imager (CWI). A filament of the cosmic web (outlined here with parallel curved lines) can be seen funneling cold gas onto the protogalaxy (outlined with an ellipse). Credit: Martin/PCWI/Caltech

The CWI is an integral field spectrograph; the researchers used it to create a multiwavelength map showing the velocities with which gas in the system is moving with respect to the center of the system. The red side of the disk is rotating away from us, while the blue side is rotating toward us. Gas within the filament is moving at a constant velocity that matches the blue side of the rotating disk. Credit: Martin/PCWI/Caltech

New findings by Caltech astronomers provide the strongest observational support yet for what is known as the cold-flow model of galaxy formation. That model holds that in the early universe, relatively cool gas funneled down from the cosmic web directly into galaxies, fueling rapid star formation. Credit: Caltech Academic Media Technologies and Office of Strategic Communications


A team of astronomers led by Caltech has discovered a giant swirling disk of gas 10 billion light-years away—a galaxy-in-the-making that is actively being fed cool primordial gas tracing back to the Big Bang. 

Using the Caltech-designed and -built Cosmic Web Imager (CWI) at Palomar Observatory, the researchers were able to image the protogalaxy and found that it is connected to a filament of the intergalactic medium, the cosmic web made of diffuse gas that crisscrosses between galaxies and extends throughout the universe.

The finding provides the strongest observational support yet for what is known as the cold-flow model of galaxy formation. That model holds that in the early universe, relatively cool gas funneled down from the cosmic web directly into galaxies, fueling rapid star formation.

A paper describing the finding and how CWI made it possible currently appears online and will be published in the August 13 print issue of the journal Nature.

"This is the first smoking-gun evidence for how galaxies form," says Christopher Martin, professor of physics at Caltech, principal investigator on CWI, and lead author of the new paper. "Even as simulations and theoretical work have increasingly stressed the importance of cold flows, observational evidence of their role in galaxy formation has been lacking."

The protogalactic disk the team has identified is about 400,000 light-years across—about four times larger in diameter than our Milky Way. It is situated in a system dominated by two quasars, the closest of which, UM287, is positioned so that its emission is beamed like a flashlight, helping to illuminate the cosmic web filament feeding gas into the spiraling protogalaxy.

Last year, Sebastiano Cantalupo, then of UC Santa Cruz (now of ETH Zurich) and his colleagues published a paper, also in Nature, announcing the discovery of what they thought was a large filament next to UM287. The feature they observed was brighter than it should have been if indeed it was only a filament. It seemed that there must be something else there.

In September 2014, Martin and his colleagues, including Cantalupo, decided to follow up with observations of the system with CWI. As an integral field spectrograph, CWI allowed the team to collect images around UM287 at hundreds of different wavelengths simultaneously, revealing details of the system's composition, mass distribution, and velocity.

Martin and his colleagues focused on a range of wavelengths around an emission line in the ultraviolet known as the Lyman-alpha line. That line, a fingerprint of atomic hydrogen gas, is commonly used by astronomers as a tracer of primordial matter.

The researchers collected a series of spectral images that combined to form a multiwavelength map of a patch of sky around the two quasars. This data delineated areas where gas is emitting in the Lyman-alpha line, and indicated the velocities with which this gas is moving with respect to the center of the system.

"The images plainly show that there is a rotating disk—you can see that one side is moving closer to us and the other is moving away. And you can also see that there's a filament that extends beyond the disk," Martin says. Their measurements indicate that the disk is rotating at a rate of about 400 kilometers per second, somewhat faster than the Milky Way's own rate of rotation.

"The filament has a more or less constant velocity. It is basically funneling gas into the disk at a fixed rate," says Matt Matuszewski (PhD '12), an instrument scientist in Martin's group and coauthor on the paper. 

"Once the gas merges with the disk inside the dark-matter halo, it is pulled around by the rotating gas and dark matter in the halo." Dark matter is a form of matter that we cannot see that is believed to make up about 27 percent of the universe. Galaxies are thought to form within extended halos of dark matter.
The new observations and measurements provide the first direct confirmation of the so-called cold-flow model of galaxy formation.

Hotly debated since 2003, that model stands in contrast to the standard, older view of galaxy formation. The standard model said that when dark-matter halos collapse, they pull a great deal of normal matter in the form of gas along with them, heating it to extremely high temperatures. The gas then cools very slowly, providing a steady but slow supply of cold gas that can form stars in growing galaxies.

That model seemed fine until 1996, when Chuck Steidel, Caltech's Lee A. DuBridge Professor of Astronomy, discovered a distant population of galaxies producing stars at a very high rate only two billion years after the Big Bang. The standard model cannot provide the prodigious fuel supply for these rapidly forming galaxies.

The cold-flow model provided a potential solution. Theorists suggested that relatively cool gas, delivered by filaments of the cosmic web, streams directly into protogalaxies. There, it can quickly condense to form stars. Simulations show that as the gas falls in, it contains tremendous amounts of angular momentum, or spin, and forms extended rotating disks.

"That's a direct prediction of the cold-flow model, and this is exactly what we see—an extended disk with lots of angular momentum that we can measure," says Martin.

Phil Hopkins, assistant professor of theoretical astrophysics at Caltech, who was not involved in the study, finds the new discovery "very compelling."

"As a proof that a protogalaxy connected to the cosmic web exists and that we can detect it, this is really exciting," he says. "Of course, now you want to know a million things about what the gas falling into galaxies is actually doing, so I'm sure there is going to be more follow up."

Martin notes that the team has already identified two additional disks that appear to be receiving gas directly from filaments of the cosmic web in the same way.

Additional Caltech authors on the paper, "A giant protogalactic disk linked to the cosmic web," are principal research scientist Patrick Morrissey, research scientist James D. Neill, and instrument scientist Anna Moore from the Caltech Optical Observatories. J. Xavier Prochaska of UC Santa Cruz and former Caltech graduate student Daphne Chang, who is deceased, are also coauthors. The Cosmic Web Imager was funded by grants from the National Science Foundation and Caltech.


Written by Kimm Fesenmaier

Contact:

Deborah Williams-Hedges
(626) 395-3227
debwms@caltech.edu

Source: Caltech