Showing posts with label Comet ISON. Show all posts
Showing posts with label Comet ISON. Show all posts

Tuesday, August 26, 2014

ALMA Confirms Comets Forge Organic Molecules in Their Dusty Atmospheres

Approximate location of Comet ISON in our Solar System at the time of the ALMA observations. 
Credit: B. Saxton (NRAO/AUI/NSF); NASA/ESA Hubble; M. Cordiner, NASA, et al.

Approximate location of Comet Lemmon in our Solar System at the time of the ALMA observations. 
Credit: B. Saxton (NRAO/AUI/NSF); Gerald Rhemann; M. Cordiner, NASA, et al.

The emission from organic molecules in the atmosphere of comet ISON as observed with ALMA. 
Credit: B. Saxton (NRAO/AUI/NSF); M. Cordiner, NASA, et al.

The emission from organic molecules in the atmosphere of comet Lemmon as observed with ALMA. 
Credit: B. Saxton (NRAO/AUI/NSF); M. Cordiner, NASA, et al.


This rotating 3-D ALMA map shows how HCN molecules are released from the nucleus of comet Lemmon and then spread evenly throughout the atmosphere, or coma. Similar maps revealed that HNC and formaldehyde are produced in the coma, rather than originating from the comet's nucleus. Credit: Visualization by Brian Kent (NRAO/AUI/NSF)

An international team of scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) has made incredible 3D images of the ghostly atmospheres surrounding comets ISON and Lemmon. These new observations provided important insights into how and where comets forge new chemicals, including intriguing organic compounds.

Comets contain some of the oldest and most pristine materials in our Solar System. Understanding their unique chemistry could reveal much about the birth of our planet and the origin of organic compounds that are the building blocks of life. ALMA's high-resolution observations provided a tantalizing 3D perspective of the distribution of the molecules within these two cometary atmospheres, or comas.

“We achieved truly first-of-a-kind mapping of important molecules that help us understand the nature of comets,” said team leader Martin Cordiner, a Catholic University of America astrochemist working at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

The critical 3D component of the ALMA observations was made by combining high-resolution, two-dimensional images of the comets with high-resolution spectra obtained from three important organic molecules – hydrogen cyanide (HCN), hydrogen isocyanide (HNC), and formaldehyde (H2CO). These spectra were taken at every point in each image. They identified not only the molecules present but also their velocities, which provided the third dimension, indicating the depths of the cometary atmospheres.

The new results revealed that HCN gas flows outward from the nucleus quite evenly in all directions, whereas HNC is concentrated in clumps and jets. ALMA’s exquisite resolution could clearly resolve these clumps moving into different regions of the cometary comas on a day-to-day and even hour-to-hour basis. These distinctive patterns confirm that the HNC and H2CO molecules actually form within the coma and provide new evidence that HNC may be produced by the breakdown of large molecules or organic dust.

"Understanding organic dust is important, because such materials are more resistant to destruction during atmospheric entry, and some could have been delivered intact to the early Earth, thereby fueling the emergence of life,” said Michael Mumma, director of the Goddard Center for Astrobiology and a co-author on the study. "These observations open a new window on this poorly known component of cometary organics."

“So, not only does ALMA let us identify individual molecules in the coma, it also gives us the ability to map their locations with great sensitivity,” said Anthony Remijan, an astronomer with the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia, and a study co-author.

The observations, published today in the Astrophysical Journal Letters, were also significant because modest comets like Lemmon and ISON contain relatively low concentrations of these crucial molecules, making them difficult to probe in depth with Earth-based telescopes. The few comprehensive studies of this kind so far have been conducted on extremely bright comets, such as Hale-Bopp. The present results extend them to comets of only moderate brightness.

Comet ISON (formally known as C/2012 S1) was observed with ALMA on November 15-17, 2013, when it was only 75 million kilometers from the Sun (about half the distance of the Earth to the Sun). Comet Lemmon (formally known as C/2012 F6) was observed on June 1-2, 2013, when it was 224 million kilometers from the Sun (about 1.5 times the distance of the Earth to the Sun).

"The high sensitivity achieved in these studies paves the way for observations of perhaps hundreds of the dimmer or more distant comets,” said Goddard’s Stefanie Milam, a study co-author. “The findings suggest that it should also be possible to map more complex molecules that have so far eluded detection in comets.”

This research was funded by the NASA Astrobiology Institute through the Goddard Center for Astrobiology and by NASA’s Planetary Atmospheres and Planetary Astronomy programs.

*  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  * *  *  *  *  *  *  *  *  *  *  *


The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Southern Observatory (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

Contacts:

Charles E. Blue, Public Information Officer
+1 (434) 296-0314; email: cblue@nrao.edu

Nancy Neal-Jones/Elizabeth Zubritsky
NASA's Goddard Space Flight Center, Greenbelt, Md.
301-286-0039/301-614-5438


Wednesday, December 11, 2013

Fire vs. Ice: The Science of ISON at Perihelion

After several days of continued observations, scientists continue to work to determine and understand the fate of Comet ISON: There's no doubt that the comet shrank in size considerably as it rounded the sun and there's no doubt that something made it out on the other side to shoot back into space. Image Credit: ESA/NASA/SOHO

This image from NASA's Solar Dynamics Observatory shows the sun, but no Comet ISON was seen. A white plus sign shows where the Comet should have appeared. Image Credit: NASA/SDO

After a year of observations, scientists waited with bated breath on Nov. 28, 2013, as Comet ISON made its closest approach to the sun, known as perihelion. Would the comet disintegrate in the fierce heat and gravity of the sun? Or survive intact to appear as a bright comet in the pre-dawn sky?

Some remnant of ISON did indeed make it around the sun, but it quickly dimmed and fizzled as seen with NASA's solar observatories. This does not mean scientists were disappointed, however. A worldwide collaboration ensured that observatories around the globe and in space, as well as keen amateur astronomers, gathered one of the largest sets of comet observations of all time, which will provide fodder for study for years to come.

On Dec. 10, 2013, researchers presented science results from the comet's last days at the 2013 Fall American Geophysical Union meeting in San Francisco, Calif. They described how this unique comet lost mass in advance of reaching perihelion and most likely broke up during its closest approach, as well, as summarized what this means for determining what the comet was made of.

"The comet's story begins with the very formation of the solar system," said Karl Battams, an astrophysicist at the Naval Research Lab in Washington, D.C. "The dirty snowball that we came to call Comet ISON was created at the same time as the planets."
 
ISON circled the solar system in the Oort cloud, more than 4.5 trillion miles away from the sun. At some point a few million years ago, something occurred – perhaps the passage of a nearby star – to knock ISON out of its orbit and send it hurtling along a path for its first trip into the inner solar system.

The comet was first spotted 585 million miles away in September 2012 by two Russian astronomers: Vitali Nevski and Artyom Novichonok. The comet was named after the project that discovered it, the International Scientific Optical Network, or ISON, and given an official designation of CC/2012 S1 (ISON). When comet scientists mapped out Comet ISON's orbit they learned that the comet would swing within 1.1 million miles of the sun's surface, making it what's known as a sungrazing comet, providing opportunities to study this pristine bit of the early solar system as it lost material while approaching the higher temperatures of the sun. With this knowledge, an international campaign to observe the comet was born. The number of space-based, ground-based, and amateur observations was unprecedented, including 12 NASA space-based assets observing Comet ISON over the past year.

Near the beginning of October, 2013, two months before perihelion, NASA's Mars Reconnaissance Observer, or MRO, turned its HiRISE instrument to view the comet during its closest approach to Mars in October 2013.

"The size of ISON's nucleus could be a little over half a mile across --- at the most.  Very likely it could have been as small as several hundred yards," said Alfred McEwen, the principal investigator for the HiRISE instrument at Arizona State University, in Tucson.

In other words, Comet ISON might have been the length of five or six football fields. This small size was near the borderline of how big ISON needed to be to survive its trip around the sun.

During that trip around the sun, Geraint Jones, a comet scientist at University College London's Mullard Space Science Laboratory in the UK studied the comet's dust tails to better understand what happened as it rounded the sun. By fitting models of the dust tail to the actual observations from NASA's Solar Terrestrial Observatory, or STEREO, and the joint European Space Agency/NASA Solar and Heliospheric Observatory, or SOHO, Jones showed that very little dust was produced after perihelion, which may suggest that the comet's nucleus had already broken up by that time.

While the comet was visible in STEREO and SOHO images going into perihelion, it was not visible in the data from NASA's Solar Dynamics Observatory, or SDO, or from ground based solar observatories during its closest approach to the sun. Dean Pesnell, project scientist for SDO at NASA's Goddard Space Flight Center in Greenbelt, Md., explained why Comet ISON wasn't visible in SDO and what could be learned from that: SDO is tuned to see wavelengths of light that would indicate the presence of oxygen, which is very common in comets.

"The fact that ISON did not show oxygen despite how close it came to the sun provides information about how high was the evaporation temperature of ISON's material," said Pesnell. "This limits what it could have been made of."

When Comet ISON was first spotted in September 2012, it was relatively bright for a comet at such a great distance from the sun. Consequently, many people had high hopes it would provide a beautiful light show visible in the night sky throughout December 2013. That potential ended when Comet ISON disrupted during perihelion. However, the legacy of the comet will go on for years as scientists analyze the tremendous data set collected during ISON's journey.

Related Links
› NASA's Comet ISON website
› Download high resolution media.
› Briefing Presentation

Karen C. Fox
NASA's Goddard Space Flight Center, Greenbelt, Md.

Friday, July 26, 2013

Comet ISON
Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)

In this Hubble Space Telescope composite image taken in April 2013, the sun-approaching Comet ISON floats against a seemingly infinite backdrop of numerous galaxies and a handful of foreground stars. The icy visitor, with its long gossamer tail, appears to be swimming like a tadpole through a deep pond of celestial wonders.
In reality, the comet is much, much closer. The nearest star to the Sun is over 60,000 times farther away, and the nearest large galaxy to the Milky Way is over thirty billion times more distant. These vast dimensions are lost in this deep space Hubble exposure that visually combines our view of the universe from the very nearby to the extraordinarily far away.

This photo is one of the original images featured on ISONblog, a new online source offering unique analysis of Comet ISON by Hubble Space Telescope astronomers and staff at the Space Telescope Science Institute in Baltimore, Md. For more on ISONblog, visit: http://hubblesite.org/go/ison.


Source: Hubble Site




Wednesday, July 03, 2013

Comet ISON Brings Holiday Fireworks

Comet ISON
Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)

Comet ISON Movie   
Credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), and G. Bacon (STScI
This July 4th the solar system is showing off some fireworks of its own. Superficially resembling a skyrocket, Comet ISON is hurtling toward the Sun at a whopping 48,000 miles per hour.

Its swift motion is captured in this time-lapse movie made from a sequence of pictures taken May 8, 2013, by NASA's Hubble Space Telescope. At the time the images were taken, the comet was 403 million miles from Earth, between the orbits of Mars and Jupiter.
The movie shows a sequence of Hubble observations taken over a 43-minute span, compressed into just five seconds. The comet travels 34,000 miles in this brief video, or 7 percent of the distance between Earth and the Moon. The deep-space visitor streaks silently against the background stars.
Unlike a firework, the comet is not combusting, but in fact is pretty cold. Its skyrocket-looking tail is really a streamer of gas and dust bleeding off the icy nucleus, which is surrounded by a bright, star-like-looking coma. The pressure of the solar wind sweeps the material into a tail, like a breeze blowing a windsock.
As the comet warms while it moves closer to the Sun, its rate of sublimation will increase. The comet will get brighter and the tail will grow longer. The comet is predicted to reach naked-eye visibility in November.
The comet is named after the organization that discovered it, the Russia-based International Scientific Optical Network.
This false-color, visible-light image was taken with Hubble's Wide Field Camera 3.


Source:  Hubble Site