An artist’s illustration of the longest black hole jet system ever observed. Nicknamed Porphyrion after a mythological Greek giant, these jets span roughly 7 megaparsecs, or 23 million light-years. That is equivalent to lining up 140 Milky Way galaxies back-to-back. Porphyrion dates back to a time when our universe was less than half its present age. During this early epoch, the wispy filaments that connect and feed galaxies, known as the cosmic web, were closer together than they are now. Consequently, this colossal jet pair extended across a larger portion of the cosmic web compared to similar jets in our nearby universe. Porphyrion’s discovery thus implies that jets in the early universe may have influenced the formation of galaxies to a greater extent than previously believed. Image credit: E. Wernquist / D. Nelson (IllustrisTNG Collaboration) / M. Oei
The jumbo jets blast hot plasma well beyond their own host galaxy
Maunakea, Hawaiʻi – Astronomers have spotted the
biggest pair of black hole jets ever seen, spanning 23 million
light-years in total length. That’s equivalent to lining up 140 Milky
Way galaxies back to back.
“This pair is not just the size of a solar system, or a Milky Way; we are talking about 140 Milky Way diameters in total,” says Martijn Oei, a Caltech postdoctoral scholar and lead author of the new study. “The Milky Way would be a little dot in these two giant eruptions.”
The study, which includes data from W. M. Keck Observatory on Maunakea, Hawaiʻi, published online today in the journal Nature and will be featured on the cover of the print issue tomorrow, September 19.
The jet megastructure, nicknamed Porphyrion after a giant in Greek mythology, dates to a time when our universe was 6.3 billion years old, or less than half its present age of 13.8 billion years. These fierce outflows—with a total power output equivalent to trillions of suns—shoot out from above and below a supermassive black hole at the heart of a remote galaxy.
Prior to Porphyrion’s discovery, the largest confirmed jet system was Alcyoneus, also named after a giant in Greek mythology. Alcyoneus, which was discovered in 2022 by the same team that found Porphyrion, spans the equivalent of around 100 Milky Ways. For comparison, the well-known Centaurus A jets, the closest major jet system to Earth, spans 10 Milky Ways.
The latest finding suggests that these giant jet systems may have had a larger influence on the formation of galaxies in the young universe than previously believed. Porphyrion existed during an early epoch when the wispy filaments that connect and feed galaxies, known as the cosmic web, were closer together than they are now. That means enormous jets like Porphyrion reached across a greater portion of the cosmic web compared to jets in the local universe.
“Astronomers believe that galaxies and their central black holes co-evolve, and one key aspect of this is that jets can spread huge amounts of energy that affect the growth of their host galaxies and other galaxies near them,” says co-author George Djorgovski, professor of astronomy and data science at Caltech. “This discovery shows that their effects can extend much farther out than we thought.”
“This pair is not just the size of a solar system, or a Milky Way; we are talking about 140 Milky Way diameters in total,” says Martijn Oei, a Caltech postdoctoral scholar and lead author of the new study. “The Milky Way would be a little dot in these two giant eruptions.”
The study, which includes data from W. M. Keck Observatory on Maunakea, Hawaiʻi, published online today in the journal Nature and will be featured on the cover of the print issue tomorrow, September 19.
The jet megastructure, nicknamed Porphyrion after a giant in Greek mythology, dates to a time when our universe was 6.3 billion years old, or less than half its present age of 13.8 billion years. These fierce outflows—with a total power output equivalent to trillions of suns—shoot out from above and below a supermassive black hole at the heart of a remote galaxy.
Prior to Porphyrion’s discovery, the largest confirmed jet system was Alcyoneus, also named after a giant in Greek mythology. Alcyoneus, which was discovered in 2022 by the same team that found Porphyrion, spans the equivalent of around 100 Milky Ways. For comparison, the well-known Centaurus A jets, the closest major jet system to Earth, spans 10 Milky Ways.
The latest finding suggests that these giant jet systems may have had a larger influence on the formation of galaxies in the young universe than previously believed. Porphyrion existed during an early epoch when the wispy filaments that connect and feed galaxies, known as the cosmic web, were closer together than they are now. That means enormous jets like Porphyrion reached across a greater portion of the cosmic web compared to jets in the local universe.
“Astronomers believe that galaxies and their central black holes co-evolve, and one key aspect of this is that jets can spread huge amounts of energy that affect the growth of their host galaxies and other galaxies near them,” says co-author George Djorgovski, professor of astronomy and data science at Caltech. “This discovery shows that their effects can extend much farther out than we thought.”
Lurking in the Past
To find the galaxy from which Porphyrion originated, the team used the Giant Metrewave Radio Telescope in India along with ancillary data from a project called Dark Energy Spectroscopic Instrument,
which operates from Kitt Peak National Observatory in Arizona. The observations pinpointed the home of the jets to a hefty galaxy about 10
times more massive than our Milky Way.
The team then used the Keck Observatory to show that Porphyrion is 7.5 billion light-years from Earth.
“Up until now, these giant jet systems appeared to be a phenomenon of
the recent universe,” Oei says. “If distant jets like these can reach
the scale of the cosmic web, then every place in the universe may have
been affected by black hole activity at some point in cosmic time,” Oei
says.
Keck Observatory’s Low Resolution Imaging Spectrometer (LRIS) also revealed that Porphyrion emerged from what is called a radiative-mode active black hole, as opposed to one that is in a jet-mode state. When supermassive black holes become active—in other words, when their immense forces of gravity tug on and heat up surrounding material—they are thought to either emit energy in the form of radiation or jets. Radiative-mode black holes were more common in the young, or distant, universe, while jet-mode ones are more common in the present-day universe.
Keck Observatory’s Low Resolution Imaging Spectrometer (LRIS) also revealed that Porphyrion emerged from what is called a radiative-mode active black hole, as opposed to one that is in a jet-mode state. When supermassive black holes become active—in other words, when their immense forces of gravity tug on and heat up surrounding material—they are thought to either emit energy in the form of radiation or jets. Radiative-mode black holes were more common in the young, or distant, universe, while jet-mode ones are more common in the present-day universe.
The fact that Porphyrion came from a radiative-mode black hole came as a surprise because astronomers did not know this mode could produce such huge and powerful jets. What is more, because Porphyrion lies in the distant universe where radiative-mode black holes abound, the finding implies there may be a lot more colossal jets left to be found.
Ongoing Mysteries
How the jets can extend so far beyond their host galaxies without destabilizing is still unclear.
“Martijn’s work has shown us that there isn’t anything particularly special about the environments of these giant sources that causes them to reach those large sizes,” says Hardcastle, who is an expert in the physics of black hole jets. “My interpretation is that we need an unusually long-lived and stable accretion event around the central, supermassive black hole to allow it to be active for so long—about a billion years—and to ensure that the jets keep pointing in the same direction over all of that time. What we’re learning from the large number of giants is that this must be a relatively common occurrence.”
As a next step, Oei wants to better understand how these megastructures influence their surroundings. The jets spread cosmic rays, heat, heavy atoms, and magnetic fields throughout the space between galaxies.
As a next step, Oei wants to better understand how these megastructures influence their surroundings. The jets spread cosmic rays, heat, heavy atoms, and magnetic fields throughout the space between galaxies.
Oei is specifically interested in finding out the extent to which giant jets spread magnetism.
“The magnetism on our planet allows life to thrive, so we want to understand how it came to be,” he says. “We know magnetism pervades the cosmic web, then makes its way into galaxies and stars, and eventually to planets, but the question is: Where does it start? Have these giant jets spread magnetism through the cosmos?”
About LRIS
The Low Resolution Imaging Spectrometer (LRIS) is a very versatile and ultra-sensitive visible-wavelength imager and spectrograph built at the California Institute of Technology by a team led by Prof. Bev Oke and Prof. Judy Cohen and commissioned in 1993. Since then it has seen two major upgrades to further enhance its capabilities: the addition of a second, blue arm optimized for shorter wavelengths of light and the installation of detectors that are much more sensitive at the longest (red) wavelengths. Each arm is optimized for the wavelengths it covers. This large range of wavelength coverage, combined with the instrument’s high sensitivity, allows the study of everything from comets (which have interesting features in the ultraviolet part of the spectrum), to the blue light from star formation, to the red light of very distant objects. LRIS also records the spectra of up to 50 objects simultaneously, especially useful for studies of clusters of galaxies in the most distant reaches, and earliest times, of the universe. LRIS was used in observing distant supernovae by astronomers who received the Nobel Prize in Physics in 2011 for research determining that the universe was speeding up in its expansion.
About W. M. Keck Observatory
The W. M. Keck Observatory telescopes are among the most scientifically productive on Earth. The two 10-meter optical/infrared telescopes atop Maunakea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometers, and world-leading laser guide star adaptive optics systems. Some of the data presented herein were obtained at Keck Observatory, which is a private 501(c) 3 non-profit organization operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the Native Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.