This image presents the Helix Nebula first at optical wavelengths, as
seen by the Hubble Space Telescope, then by Herschel’s SPIRE instrument
at wavelengths around 250 micrometres. A spectrum is shown for the
region identified on the image, showing the clear signature of CO and OH+ emission in the clumpy outer regions of the planetary nebula.
The molecular ion OH+
is needed for the formation of water, and ESA’s Herschel space
observatory is the first to detect it in planetary nebulas – the product
of dying Sun-like stars.
Copyright: Hubble image:
NASA/ESA/C.R. O’Dell (Vanderbilt University), M. Meixner & P.
McCullough (STScI); Herschel data: ESA/Herschel/SPIRE/MESS Consortium/M.
Etxaluze et al.
Using ESA’s Herschel space observatory, astronomers have discovered that a molecule vital for creating water exists in the burning embers of dying Sun-like stars.
When low- to middleweight stars like our Sun approach the end of their lives, they eventually become dense, white dwarf stars. In doing so, they cast off their outer layers of dust and gas into space, creating a kaleidoscope of intricate patterns known as planetary nebulas.
These actually have nothing to do with planets, but were named in the late 18th century by astronomer William Herschel, because they appeared as fuzzy circular objects through his telescope, somewhat like the planets in our Solar System.
Over two centuries later, planetary nebulas studied with William Herschel’s namesake, the Herschel space observatory, have yielded a surprising discovery.
Like the dramatic supernova explosions of weightier stars, the death cries of the stars responsible for planetary nebulas also enrich the local interstellar environment with elements from which the next generations of stars are born.
While supernovas are capable of forging the heaviest elements, planetary nebulas contain a large proportion of the lighter ‘elements of life’ such as carbon, nitrogen, and oxygen, made by nuclear fusion in the parent star.
When low- to middleweight stars like our Sun approach the end of their lives, they eventually become dense, white dwarf stars. In doing so, they cast off their outer layers of dust and gas into space, creating a kaleidoscope of intricate patterns known as planetary nebulas.
These actually have nothing to do with planets, but were named in the late 18th century by astronomer William Herschel, because they appeared as fuzzy circular objects through his telescope, somewhat like the planets in our Solar System.
Over two centuries later, planetary nebulas studied with William Herschel’s namesake, the Herschel space observatory, have yielded a surprising discovery.
Like the dramatic supernova explosions of weightier stars, the death cries of the stars responsible for planetary nebulas also enrich the local interstellar environment with elements from which the next generations of stars are born.
While supernovas are capable of forging the heaviest elements, planetary nebulas contain a large proportion of the lighter ‘elements of life’ such as carbon, nitrogen, and oxygen, made by nuclear fusion in the parent star.
The Ring Nebula at optical wavelengths as seen by the Hubble Space
Telescope, with Herschel data acquired with SPIRE and PACS over a
wavelength range of 51–672 micrometres for the region identified.
The spectra have been cropped and the scales stretched in order to show the OH+ emission, a molecular ion important for the formation of water. ESA’s Herschel space observatory is the first to detect this molecule in planetary nebulas – the product of dying Sun-like stars.
Copyright: Hubble image: NASA/ESA/C.
Robert O’Dell (Vanderbilt University) Herschel data: ESA/Herschel/PACS
& SPIRE/ HerPlaNS survey/I. Aleman et al. The spectra have been cropped and the scales stretched in order to show the OH+ emission, a molecular ion important for the formation of water. ESA’s Herschel space observatory is the first to detect this molecule in planetary nebulas – the product of dying Sun-like stars.
A star like the Sun steadily burns hydrogen in its core for billions of
years. But once the fuel begins to run out, the central star swells into
a red giant, becoming unstable and shedding its outer layers to form a
planetary nebula.
The remaining core of the star eventually becomes a hot white dwarf pouring out ultraviolet radiation into its surroundings.
This intense radiation may destroy molecules that had previously been
ejected by the star and that are bound up in the clumps or rings of
material seen in the periphery of planetary nebulas.
The harsh radiation was also assumed to restrict the formation of new molecules in those regions.
But in two separate studies using Herschel astronomers have discovered
that a molecule vital to the formation of water seems to rather like
this harsh environment, and perhaps even depends upon it to form. The
molecule, known as OH+, is a positively charged combination of single
oxygen and hydrogen atoms.
“We think that a critical clue is in the presence of the dense clumps of
gas and dust, which are illuminated by UV and X-ray radiation emitted
by the hot central star,” says Dr Aleman.
“This high-energy radiation interacts with the clumps to trigger
chemical reactions that leads to the formation of the molecules.”
Copyright: Hubble image:
NASA/ESA/C.R. O’Dell (Vanderbilt University), M. Meixner & P.
McCullough (STScI); Herschel image: ESA/Herschel/SPIRE/MESS
Consortium/M. Etxaluze et al.
Meanwhile, another study, led by Dr Mireya Etxaluze of the Instituto de
Ciencia de los Materiales de Madrid, Spain, focused on the Helix Nebula,
one of the nearest planetary nebulas to our Solar System, at a distance
of 700 light years.
The central star is about half the mass of our Sun, but has a far higher
temperature of about 120 000ºC. The expelled shells of the star, which
in optical images appear reminiscent of a human eye, are known to
contain a rich variety of molecules.
Herschel mapped the presence of the crucial molecule across the Helix
Nebula, and found it to be most abundant in locations where carbon
monoxide molecules, previously ejected by the star, are most likely to
be destroyed by the strong UV radiation.
Once oxygen atoms have been liberated from the carbon monoxide, they are
available to make the oxygen–hydrogen molecules, further bolstering the
hypothesis that the UV radiation may be promoting their creation.
The two studies are the first to identify in planetary nebulas this
critical molecule needed for the formation of water, although it remains
to be seen if the conditions would actually allow water formation to
proceed.
“The proximity of the Helix Nebula means we have a natural laboratory on
our cosmic doorstep to study in more detail the chemistry of these
objects and their role in recycling molecules through the interstellar
medium,” says Dr Etxaluze.
“Herschel has traced water across the Universe, from star-forming clouds
to the asteroid belt in our own Solar System,” says Göran Pilbratt,
ESA’s Herschel project scientist.
“Now we have even found that stars like our Sun could contribute to the
formation of water in the Universe, even as they are in their death
throes.”
“Herschel planetary nebula survey (HerPlaNS). First detection of OH+ in planetary nebulae,” by I. Aleman et al., and “Herschel spectral-mapping of the Helix Nebula (NGC 7293): extended CO photodissociation and OH+ emission,” by M. Etxaluze et al., are published in Astronomy & Astrophysics.
HerPlaNS (The Herschel Planetary Nebulae Survey) is a survey of 11
planetary nebulas aiming the study the formation and evolution of the
circumstellar material by tracing the dust and gas components. The
HerPlaNS team is led by Toshiya Ueta from the University of Denver.
The MESS (Mass loss of Evolved StarS) consortium studies a wide variety
of evolved stars (including planetary nebulas) to better understand the
mass loss in these objects, the dust and gas chemistry in the ejected
material, and the processes shaping the nebulae. The MESS consortium is
led by Martin Groenewegen (Royal Observatory of Belgium) and the study
of planetary nebulas within the group is led by Peter van Hoof (Royal
Observatory of Belgium).
Markus Bauer
ESA Science and Robotic Exploration Communication Officer
Tel: +31 71 565 6799
Mob: +31 61 594 3954
Email: markus.bauer@esa.int
Isabel Aleman
Leiden Observatory, University of Leiden, the Netherlands
Email: aleman@strw.leidenuniv.nl
Mireya Etxaluze
Group of Molecular Astrophysics, Instituto de Ciencias de los Materiales de Madrid, CSIC, Spain
Email: m.etxaluze@icmm.csic.es
Göran Pilbratt
ESA Herschel Project Scientist
Tel: +31 71 565 3621
Email: gpilbratt@rssd.esa.int
Source: ESA