Monday, February 29, 2016

NASA’s IBEX Observations Pin Down Interstellar Magnetic Field

(Artist concept) Far beyond the orbit of Neptune, the solar wind and the interstellar medium interact to create a region known as the , bounded on the inside by the termination shock, and on the outside by the heliopause. Credits: NASA/IBEX/Adler Planetarium

This simulation shows the origin of ribbon particles of different energies or speeds outside the heliopause (labeled HP). The IBEX ribbon particles interact with the interstellar magnetic field (labeled ISMF) and travel inwards toward Earth, collectively giving the impression of a ribbon spanning across the sky.Credits: SwRI/Zirnstein

The new paper is based on one particular theory of the origin of the IBEX ribbon, in which the particles streaming in from the ribbon are actually solar material reflected back at us after a long journey to the edges of the sun’s magnetic boundaries. A giant bubble, known as the heliosphere, exists around the sun and is filled with what’s called solar wind, the sun’s constant outflow of ionized gas, known as plasma. When these particles reach the edges of the heliosphere, their motion becomes more complicated.

“The theory says that some solar wind protons are sent flying back towards the sun as neutral atoms after a complex series of charge exchanges, creating the IBEX ribbon,” said Eric Zirnstein, a space scientist at the Southwest Research Institute in San Antonio, Texas, and lead author on the study. “Simulations and IBEX observations pinpoint this process – which takes anywhere from three to six years on average – as the most likely origin of the IBEX ribbon.”

Outside the heliosphere lies the interstellar medium, with plasma that has different speed, density, and temperature than solar wind plasma, as well as neutral gases. These materials interact at the heliosphere’s edge to create a region known as the inner heliosheath, bounded on the inside by the termination shock – which is more than twice as far from us as the orbit of Pluto – and on the outside by the heliopause, the boundary between the solar wind and the comparatively dense interstellar medium.

Some solar wind protons that flow out from the sun to this boundary region will gain an electron, making them neutral and allowing them to cross the heliopause. Once in the interstellar medium, they can lose that electron again, making them gyrate around the interstellar magnetic field. If those particles pick up another electron at the right place and time, they can be fired back into the heliosphere, travel all the way back toward Earth, and collide with IBEX’s detector. The particles carry information about all that interaction with the interstellar magnetic field, and as they  hit the detector they can give us unprecedented insight into the characteristics of that region of space.

“Only Voyager 1 has ever made direct observations of the interstellar magnetic field, and those are close to the heliopause, where it’s distorted,” said Zirnstein. “But this analysis provides a nice determination of its strength and direction farther out.”

The directions of different ribbon particles shooting back toward Earth are determined by the characteristics of the interstellar magnetic field. For instance, simulations show that the most energetic particles come from a different region of space than the least energetic particles, which gives clues as to how the interstellar magnetic field interacts with the heliosphere.

For the recent study, such observations were used to seed simulations of the ribbon’s origin. Not only do these simulations correctly predict the locations of neutral ribbon particles at different energies, but the deduced interstellar magnetic field agrees with Voyager 1 measurements, the deflection of interstellar neutral gases, and observations of distant polarized starlight.

However, some early simulations of the interstellar magnetic field don’t quite line up. Those pre-IBEX estimates were based largely on two data points – the distances at which Voyagers 1 and 2 crossed the termination shock.

“Voyager 1 crossed the termination shock at 94 astronomical units, or AU, from the sun, and Voyager 2 at 84 AU,” said Zirnstein. One AU is equal to about 93 million miles, the average distance between Earth and the sun. “That difference of almost 930 million miles was mostly explained by a strong, very tilted interstellar magnetic field pushing on the heliosphere.”

But that difference may be accounted for by considering a stronger influence from the solar cycle, which can lead to changes in the strength of the solar wind and thus change the distance to the termination shock in the directions of Voyager 1 and 2. The two Voyager spacecraft made their measurements almost three years apart, giving plenty of time for the variable solar wind to change the distance of the termination shock.

“Scientists in the field are developing more sophisticated models of the time-dependent solar wind,” said Zirnstein.

The simulations generally jibe well with the Voyager data.

The IBEX ribbon is a relatively narrow strip of particles flying in towards the sun from outside the heliosphere. A new study corroborates the idea that particles from outside the heliosphere that form the IBEX ribbon actually originate at the sun – and reveals information about the distant interstellar magnetic field. Credits: SwRI

“The new findings can be used to better understand how our space environment interacts with the interstellar environment beyond the heliopause,” said Eric Christian, IBEX program scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who was not involved in this study. “In turn, understanding that interaction could help explain the mystery of what causes the IBEX ribbon once and for all.”

The Southwest Research Institute leads IBEX with teams of national and international partners. NASA Goddard manages the Explorers Program for the agency’s Heliophysics Division within the Science Mission Directorate in Washington.

Related Link

 Source: NASA/Ibex

Friday, February 26, 2016

Blue bubble in Carina

Credit: ESA/Hubble & NASA
Acknowledgement: Judy Schmidt

Sparkling at the centre of this beautiful NASA/ESA Hubble Space Telescope image is a Wolf–Rayet star known as WR 31a, located about 30 000 light-years away in the constellation of Carina (The Keel).

The distinctive blue bubble appearing to encircle WR 31a, and its uncatalogued stellar sidekick, is a Wolf–Rayet nebula — an interstellar cloud of dust, hydrogen, helium and other gases. Created when speedy stellar winds interact with the outer layers of hydrogen ejected by Wolf–Rayet stars, these nebulae are frequently ring-shaped or spherical. The bubble — estimated to have formed around 20 000 years ago — is expanding at a rate of around 220 000 kilometres per hour!

Unfortunately, the lifecycle of a Wolf–Rayet star is only a few hundred thousand years — the blink of an eye in cosmic terms. Despite beginning life with a mass at least 20 times that of the Sun, Wolf–Rayet stars typically lose half their mass in less than 100 000 years. And WR 31a is no exception to this case. It will, therefore, eventually end its life as a spectacular supernova, and the stellar material expelled from its explosion will later nourish a new generation of stars and planets.

Thursday, February 25, 2016

Subaru-HiCIAO Spots Young Stars Surreptitiously Gluttonizing Their Birth Clouds

An international team led by researchers at the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA) has used a new infrared imaging technique to reveal dramatic moments in star and planet formation. These seem to occur when surrounding material falls toward very active baby stars, which then feed voraciously on it even as they remain hidden inside their birth clouds. The team used the HiCIAO (High Contrast Instrument for the Subaru Next-Generation Adaptive Optics) camera on the Subaru 8-meter Telescope in Hawaii to observe a set of newborn stars. The results of their work shed new light on our understanding of how stars and planets are born (Figure 1).

Figure 1: Circumstellar structures revealed by Subaru-HiCIAO. The scale bars are shown in AUs (astronomical units). One AU is the average distance from the sun to the earth. The gas and dust surrounding baby stars (their food) are significantly more extended than our solar system. Here we show the first observations of such complex structures around active young stars. Figure without the labels is linked here. (Credit: Science Advances, H. B. Liu.)

The Process of Star Birth

Stars are born when giant clouds of dust and gas collapse under the pull of their own gravity. Planets are believed to be born at nearly the same time as their stars in the same disk of material. However, there are still a number of mysteries about the detailed physical processes that occur as stars and planets form (Figure 2).

Figure 2: A schematic diagram of star and planet formation based on Green (2001)
Credit: ASIAA

The giant collections of dust and gas where stars form are called "molecular clouds" because they are largely made up of molecules of hydrogen and other gases. Over time, gravity in the densest regions of these clouds gathers in the surrounding gas and dust, via a process called "accretion". It is often assumed that this process is smooth and continuous (Figure 2). However, this steady infall explains only a small fraction of the final mass of each star that is born in the cloud. Astronomers are still working to understand when and how the remaining material is gathered in during the process of star and planet birth.

A few stars are known to be associated with a sudden and violent "feeding" frenzy from inside their stellar nursery. When they gluttonize on the surrounding material, their visible light increases very suddenly and dramatically, by a factor of about a hundred. These sudden flareups in brightness are called "FU Orionis outbursts" because they were first discovered toward the star FU Orionis.

Not many stars are found to be associated with such outbursts — only a dozen out of thousands. However, astronomers speculate that all baby stars may experience such outbursts as part of their growth. The reason we only see FU Ori outbursts toward a few newborn stars is simply because they are relatively quiet most of the time.

One key question about this mysterious facet of starbirth is "What are the detailed physical mechanisms of these outbursts?" The answer lies in the region surrounding the star. Astronomers know the optical outbursts are associated with a disk of material close to the star, called the "accretion disk". It becomes significantly brighter when the disk gets heated up to temperatures similar to those of lava flows here on Earth (around 700 to 1200 C or 1292 to 2182 F) like the one flowing from Kilauea volcano area in the island of Hawaii. Several processes have been proposed as triggers for such outbursts and astronomers have been investigating them over the past few decades.

Finding a Mechanism for FU Ori Outbursts

An international team lead by Drs. Hauyu Baobab Liu and Hiro Takami, two researchers at ASIAA, used a novel imaging technique available at the Subaru Telescope to tackle this issue. The technique – imaging polarimetry with coronagraphy – has tremendous advantages for imaging the environments in the disks. In particular, its high angular resolution and sensitivity allow astronomers to "see" the light from the disk more easily. How does this work?

Circumstellar material is a mixture of gas and dust. The amount of dust is significantly smaller than the amount of gas in the cloud, so it has little effect on the motion of the material. However, dust particles scatter (reflect) light from the central star, illuminating all the surrounding material. The HiCIAO camera mounted on the Subaru 8.2-meter telescope, one of the largest optical and near-infrared (NIR) telescopes in the world, is well-suited to observing this dim circumstellar light. It successfully allowed the team to observe four stars experiencing FU Ori outbursts.

Details of Four FU Ori Outbursts

The team's target stars are located 1,500-3,500 light-years from our solar system. The images of these outbursting newborns were surprising and fascinating, and nothing like anything previously observed around young stars (Figure 1). Three have unusual tails. One shows an "arm", a feature created by the motion of material around the star. Another shows odd spiky features, which may result from an optical outburst blowing away circumstellar gas and dust. None of them match the picture of steady growth shown in Figure 2. Rather, they show a messy and chaotic environment, much like a human baby eating food.

To understand the structures observed around these newborn stars, theorists on the team extensively studied one of several mechanisms proposed to explain FU Ori outbursts. It suggests that gravity in circumstellar gas and dust clouds creates complicated structures that look like cream stirred into coffee (Figure 3, left). These oddly shaped collections of material fall onto the star at irregular intervals. The team also conducted further computer simulations for scattered light from the outburst. Although more simulations are required to match the simulations to the observed images, these images show that this is a promising explanation for the nature of FU Ori outbursts (Figure 3).

Figure 3: Images made from computer simulations based on one theory for violent growth of a star. (Left) Simulations of the motion of circumstellar materials falling onto a baby star. (Middle and right). Models of how we would observe the structure in scattered light, seen from two different angles. (Credit: Science Advances, H. B. Liu.)

Studying these structures may also reveal how some planetary systems are born. Astronomers know some exoplanets (planets around other stars) are found extremely far away from their central stars. Sometimes they orbit more than a thousand times the distance between the Sun and Earth, and significantly larger than the orbit of Neptune (which is about 30 times the distance between the Sun and Earth). These distances are also much larger than orbits explained by standard theories of planet formation. Simulations of complicated circumstellar structures like the ones seen in the HiCIAO views also predict that some dense clumps in the material may become gas giant planets. This would naturally explain the presence of exoplanets with such large orbits.

In spite of these exciting new results, there is a still great deal more work to do to understand the mechanisms of star and planet birth. More detailed comparisons between observation and theory are needed. Further observations, particularly with the Atacama Large Millimeter/Submillimeter Array, will take our gaze more deeply into circumstellar gas and dust clouds. The array allows observations of the surrounding dust and gas with unprecedented angular resolution and sensitivity. Astronomers are also planning to construct telescopes significantly larger than Subaru in the coming decades – including the Thirty Meter Telescope (TMT) and the European Extremely Large Telescope. These should allow detailed studies of regions very close to newborn stars.

  1. Astronomical Unit (AU) is a unit of distance. 1 AU corresponds to the average distance between the Earth and the Sun.

Paper and Research Team:

This research was supported by the Ministry of Science and Technology (MoST) of Taiwan (Grant Nos. 103-2112-M-001-029 and 104-2119-M-001-018). E.I.V. acknowledges the support from the Russian Ministry of Education and Science Grant 3.961.2014/K and RFBR grant 14-02-00719. R.D. was supported by Hubble Fellowship. M.M.D. acknowledges support from the Submillimeter Array through an SMA Postdoctoral Fellowship.

These observational results were published by Liu et al. as "Circumstellar Disks of the Most Vigorously Accreting Young Stars" in the Science Advances on February 5, 2016.

This research was conducted by:

  • Hauyu Baobab Liu (Academia Sinica Institute of Astronomy and Astrophysics, Taiwan / European Southern Observatory, EU)
  • Michihiro Takami (Academia Sinica Institute of Astronomy and Astrophysics, Taiwan)
  • Tomoyuki Kudo (Subaru Telescope, National Astronomical Observatory of Japan, USA)
  • Jun Hashimoto (National Astronomical Observatory of Japan, Japan)
  • Ruobing Dong (Academia Sinica Institute of Astronomy and Astrophysics, Taiwan / Hubble Fellow / Department of Astronomy, UC Berkeley, USA)
  • Eduard I. Vorobyov (Department of Astrophysics, University of Vienna, Austria / Research Institute of Physics, Southern Federal University, Russia)
  • Tae-Soo Pyo (Subaru Telescope, National Astronomical Observatory of Japan, USA)
  • Misato Fukagawa (National Astronomical Observatory of Japan, Japan)
  • Motohide Tamura (National Astronomical Observatory of Japan, Japan / Department of Astronomy, Graduate School of Science, The University of Tokyo, Japan)
  • Thomas Henning (Max-Planck-Institut für Astronomie, Germany)
  • Michael M. Dunham (Harvard-Smithsonian Center for Astrophysics, USA)
  • Jennifer Karr (Academia Sinica Institute of Astronomy and Astrophysics, Taiwan)
  • Nobuhiko Kusakabe (National Astronomical Observatory of Japan, Japan)
  • Toru Tsuribe (College of Science, Ibaraki University, Japan)

New Fast Radio Burst Discovery Finds 'Missing Matter' in the Universe

An international team of scientists using a combination of radio and optical telescopes identified the distant location of a fast radio burst (FRB) for the first time. This discovery has allowed them to confirm the current cosmological model of the distribution of matter in the universe.

The fast radio burst was detected on April 18, 2015 by the Commonwealth Scientific and Industrial Research Organisation (CSIRO)'s 64-meter Parkes radio telescope in Australia. That observation triggered an international alert to other telescopes to follow up with their observations. Within a few hours, CSIRO's Australian Telescope Compact Array (ATCA), as well as other facilities around the world were looking for the signal.

FRBs are mysterious bright radio flashes generally lasting only a few milliseconds. Their cause is still unknown and there is a long list of phenomena potentially associated with them. FRBs are very difficult to detect; before this discovery only 16 had been observed.

"In the past, FRBs have been found by sifting through data months or even years later. By that time it is too late to do follow up observations," said Dr. Evan Keane, Project Scientist at the Square Kilometre Array Organisation (SKAO) and the lead scientist behind the study. To remedy this, the team developed its own observing system at Swinburne University of Technology in Australia to detect FRBs within seconds, and to immediately alert other telescopes while there is still time to search for more evidence in the aftermath of the initial flash (Figure 1).

Figure 1: This image shows the field of view of the Parkes radio telescope on the left. On the right are successive zoom-ins in on the area where the signal came from (cyan circular region). The image at the bottom right shows the Subaru Telescope's image of the FRB galaxy, with the superimposed elliptical regions showing the location of the fading 6-day afterglow seen with ATCA. Image Credit: D. Kaplan (UWM), E. F. Keane (SKAO).

Catching a Flash

Thanks to the ATCA's six 22-meter dishes and their combined resolution, the team was able to pinpoint the location of the signal with much greater accuracy than has been possible in the past. The observations revealed a radio afterglow that lasted for around six days before fading away. This afterglow enabled astronomers to pinpoint the location of the FRB about a thousand times more precisely than for previous observed events (Figure 1).

The team members from the University of Tokyo (UTokyo), the National Astronomical Observatory of Japan (NAOJ), and Konan University next examined an optical image of the FRB taken a day after the first flash by the NAOJ's 8.2-meter Subaru Telescope in Hawaii. The image revealed a possible source: an elliptical galaxy some 6 billion light-years away. Follow-up spectroscopic observations by the Subaru Telescope yielded a redshift measurement for the source, which allowed astronomers to calculate its distance. (Redshift is the speed at which the galaxy is moving away from us due to the expansion of the universe). "For the first time, we have identified the host galaxy and measured the distance to a fast radio burst," said Dr. Tomonori Totani, professor at the UTokyo Department of Astronomy, who led the optical observation effort.

Doing Cosmology with an FRB

FRBs show a frequency-dependent dispersion (Figure 2), a delay in the radio signal caused by how much material it has gone through. "Until now, the dispersion measure is all we had. By also having a distance we can now measure how dense the material is between the point of origin and Earth, and compare that with the current model of the distribution of matter in the universe" explained Dr. Simon Johnston, of CSIRO's Astronomy and Space Science division. "Essentially, this lets us weigh the universe, or at least the normal matter it contains."

In the current model, the universe is believed to be made of 70% dark energy, 25% dark matter and 5% 'ordinary' matter, the matter that makes up everything we see. However, through observations of stars, galaxies and hydrogen, astronomers have only been able to account for about half of the ordinary matter, the rest cannot be seen directly and so has been referred to as 'missing.'

"The good news is our observations and the model match. We have found the missing matter" explained Dr. Keane. "It's the first time a fast radio burst has been used to conduct a cosmological measurement." 

Finding the Cause of FRBs

Still, the origin of FRBs is a mystery. The fact that the host galaxy is an elliptical galaxy, which is not actively forming young stars, implies that it takes a long time for a stellar system to evolve into an FRB. This favors scenarios like compact binary star mergers, but there is no direct evidence yet.

Future observations of FRBs in a variety of wavebands may well reveal more details about this enigmatic astronomical phenomenon. Optical observations are essential as demonstrated by the present study. Instruments such as the Subaru Telescope and the upcoming Thirty Meter Telescope (TMT) in future will play major roles as FRBs occur.

Even more tantalizing is the idea that FRBs could also be sources of gravitational waves, leading to collaboration between FRB search projects and gravitational wave observations. These could make valuable contributions to the new era of gravitational wave astronomy begun by the recent discovery of a black hole binary merger by the LIGO Observatory.

Figure 2: This image shows the increased delay in the arrival time of the Fast Radio Burst as a function of the frequency. The delay in the signal is caused by the material it goes through between its point of origin and Earth. Image Credit: E. F. Keane (SKAO).

The study was published in Nature on February 24, 2016, titled "The host galaxy of a fast radio burst" by Keane et al. This research is supported in part by a Grant-in-Aid for the Scientific Research (No. 15K05018) by the Japan Society for the Promotion of Science.  

Wednesday, February 24, 2016

ATLASGAL Survey of Milky Way Completed

 PR Image eso1606a
The southern plane of the Milky Way from the ATLASGAL survey 

The southern plane of the Milky Way from the ATLASGAL survey 

The southern plane of the Milky Way from the ATLASGAL survey (annotated)

Comparison of the central part of the Milky Way at different wavelengths

Comparison of the central part of the Milky Way at different wavelengths (annotated) 


Close look at the ATLASGAL image of the plane of the Milky Way
Close look at the ATLASGAL image of the plane of the Milky Way

Comparison of the central part of the Milky Way at different wavelengths
Comparison of the central part of the Milky Way at different wavelengths 

A spectacular new image of the Milky Way has been released to mark the completion of the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL). The APEX telescope in Chile has mapped the full area of the Galactic Plane visible from the southern hemisphere for the first time at submillimetre wavelengths — between infrared light and radio waves — and in finer detail than recent space-based surveys. The pioneering 12-metre APEX telescope allows astronomers to study the cold Universe: gas and dust only a few tens of degrees above absolute zero.

APEX, the Atacama Pathfinder EXperiment telescope, is located at 5100 metres above sea level on the Chajnantor Plateau in Chile’s Atacama region. The ATLASGAL survey took advantage of the unique characteristics of the telescope to provide a detailed view of the distribution of cold dense gas along the plane of the Milky Way galaxy [1]. The new image includes most of the regions of star formation in the southern Milky Way [2].

The new ATLASGAL maps cover an area of sky 140 degrees long and 3 degrees wide, more than four times larger than the first ATLASGAL release [3]. The new maps are also of higher quality, as some areas were re-observed to obtain a more uniform data quality over the whole survey area.

The ATLASGAL survey is the single most successful APEX large programme with nearly 70 associated science papers already published, and its legacy will expand much further with all the reduced data products now available to the full astronomical community [4].

At the heart of APEX are its sensitive instruments. One of these, LABOCA (the LArge BOlometer Camera) was used for the ATLASGAL survey. LABOCA  measures incoming radiation by registering the tiny rise in temperature it causes on its detectors and can detect emission from the cold dark dust bands obscuring the stellar light.

The new release of ATLASGAL complements observations from ESA's Planck satellite [5]. The combination of the Planck and APEX data allowed astronomers to detect emission spread over a larger area of sky and to estimate from it the fraction of dense gas in the inner Galaxy. The ATLASGAL data were also used to create a complete census of cold and massive clouds where new generations of stars are forming.

ATLASGAL provides exciting insights into where the next generation of high-mass stars and clusters form. By combining these with observations from Planck, we can now obtain a link to the large-scale structures of giant molecular clouds,” remarks Timea Csengeri from the Max Planck Institute for Radio Astronomy (MPIfR), Bonn, Germany, who led the work of combining the APEX and Planck data.

The APEX telescope recently celebrated ten years of successful research on the cold Universe. It plays an important role not only as pathfinder, but also as a complementary facility to ALMA, the Atacama Large Millimeter/submillimeter Array, which is also located  on the Chajnantor Plateau. APEX is based on a prototype antenna constructed for the ALMA project, and it has found many targets that ALMA can study in great detail.

Leonardo Testi from ESO, who is a member of the ATLASGAL team and the European Project Scientist for the ALMA project, concludes: “ATLASGAL has allowed us to have a new and transformational look at the dense interstellar medium of our own galaxy, the Milky Way. The new release of the full survey opens up the possibility to mine this marvellous dataset for new discoveries. Many teams of scientists are already using the ATLASGAL data to plan for detailed ALMA follow-up.


[1] The map was constructed from individual APEX observations of radiation with a wavelength of 870 µm (0.87 millimetres).

[2] The northern part of the Milky Way had already been mapped by the James Clerk Maxwell Telescope (JCMT) and other telescopes, but the southern sky is particularly important as it includes the Galactic Centre, and because it is accessible for detailed follow-up observations with ALMA.
[3] The first data release covered an area of approximately 95 square degrees, a very long and narrow strip along the Galactic Plane two degrees wide and over 40 degrees long. The final maps now cover 420 square degrees, more than four times larger.

[4] The data products are available through the ESO archive.

[5] The Planck data cover the full sky, but with poor spatial resolution. ATLASGAL covers only the Galactic plane, but with high angular resolution. Combining both provides excellent spatial dynamic range.

More Information

ATLASGAL is a collaboration between the Max Planck Institute for Radio Astronomy (MPIfR), the Max Planck Institute for Astronomy (MPIA), ESO, and the University of Chile.

APEX is a collaboration between the Max Planck Institute for Radio Astronomy (MPIfR), the Onsala Space Observatory (OSO) and ESO. Operation of APEX at Chajnantor is carried out by ESO.

ALMA is a partnership of the ESO, the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.



Carlos De Breuck
ESO APEX Programme Scientist
Garching bei München, Germany
Tel: +49 89 3200 6613

Frederic Schuller
ATLASGAL Principal Investigator - Max Planck Institute for Radio Astronomy
Bonn, Germany

Friedrich Wyrowski
APEX Project Scientist – Max Planck Institute for Radio Astronomy
Bonn, Germany
Tel: +49 228 525 383

Norbert Junkes
Press and Public Outreach – Max Planck Institute for Radio Astronomy
Bonn, Germany
Tel: +49 228 525 399

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591

Source: ESO

Tuesday, February 23, 2016

Discovering Distant Radio Galaxies via Gravitational Lensing

A Hubble Space Telescope image of distant, bright radio galaxies being gravitationally lensed by a very large foreground galaxy cluster. The red contours show the radio emission of these galaxies, which date from an epoch about three billion years after the big bang. A team of X-ray astronomers used these lensed radio galaxies to identify and study distant galaxies with active supermassive black hole nuclei. Credit: NASA HST, and van Weeren et al.

A lensing cluster is a gravitationally bound collection of galaxies, hundreds or even thousands, whose mass acts as a gravitational lens to collect and reimage the light of more distant objects. These lensing clusters make excellent targets for astronomical research into the early universe because they magnify the faint radiation from more distant galaxies seen behind them, making these remote objects accessible to our telescopes. Most searches in "lensed galaxies" have so far been done at optical, near infrared or submillimeter wavelengths, and the latter have been successful at identifying luminous dusty galaxies from earlier cosmic epochs that are powered by bursts of star formation that were more common back then.

X-ray astronomers study the powerful jets and high energy particles around supermassive black holes at the nuclei of active galaxies (AGN). X-rays are also seen in galaxies dominated by star formation, but they are much dimmer than those seen from AGN and so are difficult to study when these galaxies are at cosmological distances. Even finding distant examples in lensing searches can be challenging, and when the star formation activity is modest they are not even expected to show up in infrared lensing searches. But in galactic nuclei, the same fast-moving particles that emit at X-ray wavelengths also emit at radio wavelengths. A search for lensed radio emission, therefore, is a way to study distant, faint galaxies and their black hole nuclei.

CfA astronomers Reinout van Weeren, G. Ogrean, Christine Jones, Bill Forman, Felipe Andrade-Santos, E. Bulbul, Lawrence David, Ralph Kraft, Steve Murray (deceased), Paul Nulsen, Scott Randall, and Alexey Vikhlinin and their colleagues have completed a radio survey of the large cluster known as MACS J0717.5+3745. This group of galaxies, one of the largest and most complex known with the equivalent of over ten thousand Milky Way-sized galaxies, is located about five billion light-years away.

The astronomers used the Jansky Very Large Array to hunt for lensed radio sources in this cluster, and detected fifty-one compact galaxies -- seven whose light seems to be magnified by the cluster by more than factor of two and as much as a factor of nine. The scientists infer from the radio fluxes that most of these seven are forming new stars at a modest rate, ten to fifty per year, and date from an epoch about three billion years after the big bang. Two are also detected in X-rays by the Chandra X-ray Observatory, and so host AGN, each one radiating about as much light in X-rays as a billion Suns. The two AGN are interesting in themselves, but finding them both in this one region suggests that, like bright star forming galaxies, these AGN were more common back then too. 


"The Discovery of Lensed Radio and X-ray Sources Behind the Frontier Fields Cluster MACSJ0717.5+3745 with the JVLA and Chandra," R. J. van Weeren, G. A. Ogrean, C. Jones, W. R. Forman, F. Andrade-Santos, A. Bonafede, M. Brüggen, E. Bulbul, T. E. Clarke, E. Churazov, L. David, W. A. Dawson, M. Donahue, A. Goulding, R. P. Kraft, B. Mason, J. Merten, T. Mroczkowski, S. S. Murray, P. E. J. Nulsen, P. Rosati, E. Roediger, S. W. Randall, J. Sayers, K. Umetsu, A. Vikhlinin, and A. Zitrin, ApJ 817, 98, 2016.

Friday, February 19, 2016

A diamond in the dust

Credit: ESA/Hubble & NASA
Acknowledgement: Judy Schmidt

Surrounded by an envelope of dust, the subject of this NASA/ESA Hubble Space Telescope image is a young pre-main-sequence star known as HBC 1. The star is in an immature and adolescent phase of life, hence its classification — most of a Sun-like star’s life is spent in a stage comparable to human adulthood dubbed the main sequence.

In this view, HBC 1 illuminates a wispy reflection nebula known as IRAS 00044+6521. Formed from clouds of interstellar dust, reflection nebulae do not emit any visible light of their own and instead — like fog encompassing a lamppost — shine via the light from the stars embedded within. Though nearby stars cannot ionise the nebula’s non-gaseous contents, as with brighter emission nebulae, scattered starlight can make the dust visible.

What makes this seemingly ordinary reflection nebula more interesting are three nearby Herbig–Haro objects known as HH 943, HH 943B and HH 943A — which are not visible in this image — located within IRAS 00044+6521 itself. Herbig–Haro objects are small patches of dust, hydrogen, helium and other gases that form when narrow jets of gas ejected by young stars such as HBC 1 collide with clouds of gas and dust. Lasting just a few thousand years, these objects rapidly move away from their parent star before dissipating into space.

Thursday, February 18, 2016

Hubble Directly Measures Rotation of Cloudy 'Super-Jupiter'

This is an illustration of a planet that is four times the mass of Jupiter and orbits 5 billion miles from a brown-dwarf companion (the bright red object seen in the background). The rotation rate of this "super-Jupiter" has been measured by studying subtle variations in the infrared light the hot planet radiates through a variegated, cloudy atmosphere. The planet completes one rotation every 10 hours — about the same rate as Jupiter. Because the planet is young, it is still contracting under gravity and radiating heat. The atmosphere is so hot that it rains molten glass and, at lower altitudes, molten iron.

2M1207, 2MASS J12073346-3932539
[Left] — This is a Hubble Space Telescope near-infrared-light image of a brown dwarf located 170 light-years away from Earth. The object is no more than 30 times the mass of Jupiter, making it too small to sustain nuclear fusion to shine as a star.

[Right] — When the glow of the brown dwarf is subtracted from the image, a smaller and fainter companion object becomes visible. No more that four times the mass of Jupiter, this companion is dubbed a "super-Jupiter." It has an estimated diameter as big as 40 percent greater than Jupiter's diameter. The world is 5 billion miles from the brown dwarf, nearly twice the distance between our sun and the planet Neptune.

Because the planet is only 10 million years old, it is so hot it may rain molten glass and iron in its atmosphere. Hubble has measured fluctuations in the planet's brightness that suggests the planet has patchy clouds as it completes one rotation every 10 hours.Credit: NASA, ESA, and Y. Zhou (University of Arizona)
This graph plots small changes in the infrared brightness of a super-Jupiter as measured by the Hubble Space Telescope. The S-shaped curve is extrapolated from the data points. Its sinusoidal shape suggests that brightness changes are a result of a 10-hour rotation period (horizontal axis). The vertical axis shows small changes in brightness. This would mean that the planet likely has patchy clouds that influence the amount of infrared radiation observed as the planet rotates. At a distance of 170 light-years from Earth, the planet is too far away for Hubble to actually resolve atmospheric structure. Credit: NASA, ESA, Y. Zhou (University of Arizona), and P. Jeffries (STScI)

Astronomers using NASA's Hubble Space Telescope have measured the rotation rate of an extreme exoplanet by observing the varied brightness in its atmosphere. This is the first measurement of the rotation of a massive exoplanet using direct imaging.

"The result is very exciting," said Daniel Apai of the University of Arizona in Tucson, leader of the Hubble investigation. "It gives us a unique technique to explore the atmospheres of exoplanets and to measure their rotation rates."

The planet, called 2M1207b, is about four times more massive than Jupiter and is dubbed a "super-Jupiter." It is a companion to a failed star known as a brown dwarf, orbiting the object at a distance of 5 billion miles. By contrast, Jupiter is approximately 500 million miles from the sun. The brown dwarf is known as 2M1207. The system resides 170 light-years away from Earth.

Hubble's image stability, high resolution, and high-contrast imaging capabilities allowed astronomers to precisely measure the planet's brightness changes as it spins. The researchers attribute the brightness variation to complex clouds patterns in the planet's atmosphere. The new Hubble measurements not only verify the presence of these clouds, but also show that the cloud layers are patchy and colorless.

Astronomers first observed the massive exoplanet 10 years ago with Hubble. The observations revealed that the exoplanet's atmosphere is hot enough to have "rain" clouds made of silicates: vaporized rock that cools down to form tiny particles with sizes similar to those in cigarette smoke. Deeper into the atmosphere, iron droplets are forming and falling like rain, eventually evaporating as they enter the lower levels of the atmosphere.

"So at higher altitudes it rains glass, and at lower altitudes it rains iron," said Yifan Zhou of the University of Arizona, lead author on the research paper. "The atmospheric temperatures are between about 2,200 to 2,600 degrees Fahrenheit."

The super-Jupiter is so hot that it appears brightest in infrared light. Astronomers used Hubble's Wide Field Camera 3 to analyze the exoplanet in infrared light to explore the object's cloud cover and measure its rotation rate. The planet is hot because it is only about 10 million years old and is still contracting and cooling. For comparison, Jupiter in our solar system is about 4.5 billion years old.

The planet, however, will not maintain these sizzling temperatures. Over the next few billion years, the object will cool and fade dramatically. As its temperature decreases, the iron and silicate clouds will also form lower and lower in the atmosphere and will eventually disappear from view.

Zhou and his team have also determined that the super-Jupiter completes one rotation approximately every 10 hours, spinning at about the same fast rate as Jupiter.

This super-Jupiter is only about five to seven times less massive than its brown-dwarf host. By contrast, our sun is about 1,000 times more massive than Jupiter. "So this is a very good clue that the 2M1207 system we studied formed differently than our own solar system," Zhou explained. The planets orbiting our sun formed inside a circumstellar disk through accretion. But the super-Jupiter and its companion may have formed throughout the gravitational collapse of a pair of separate disks.

"Our study demonstrates that Hubble and its successor, NASA's James Webb Space Telescope, will be able to derive cloud maps for exoplanets, based on the light we receive from them," Apai said. 

Indeed, this super-Jupiter is an ideal target for the Webb telescope, an infrared space observatory scheduled to launch in 2018. Webb will help astronomers better determine the exoplanet's atmospheric composition and derive detailed maps from brightness changes with the new technique demonstrated with the Hubble observations.

Results from this study will appear in the Feb. 18, 2016, edition of The Astrophysical Journal.


Donna Weaver / Ray Villard
Space Telescope Science Institute, Baltimore, Maryland
410-338-4493 / 410-338-4514 /

Source: HubbleSite

Wednesday, February 17, 2016

First Detection of Super-Earth Atmosphere

This video shows an artist's impression of the super-Earth 55 Cancri e moving in front of its parent star. During these transits astronomers were able to gather information about the atmosphere of the exoplanet. The Scientists were able to retrieve the spectrum of 55 Cancri e embedded in the light of its parent star. The analysis showed that the atmosphere of 55 Cancri e consists mainly of helium and hydrogen with hints of hydrogen cyanide.Credit: ESA/Hubble, M. Kornmesser

Artist’s impression of 55 Cancri e

Artist’s impression of 55 Cancri e (close-up)

For the first time astronomers were able to analyse the atmosphere of an exoplanet in the class known as super-Earths. Using data gathered with the NASA/ESA Hubble Space Telescope and new analysis techniques, the exoplanet 55 Cancri e is revealed to have a dry atmosphere without any indications of water vapour. The results, to be published in the Astrophysical Journal, indicate that the atmosphere consists mainly of hydrogen and helium.

The international team, led by scientists from University College London (UCL) in the UK, took observations of the nearby exoplanet 55 Cancri e, a super-Earth with a mass of eight Earth-masses [1]. It is located in the planetary system of 55 Cancri, a star about 40 light-years from Earth.

Using observations made with the Wide Field Camera 3 (WFC3) on board the NASA/ESA Hubble Space Telescope, the scientists were able to analyse the atmosphere of this exoplanet. This makes it the first detection of gases in the atmosphere of a super-Earth. The results allowed the team to examine the atmosphere of 55 Cancri e in detail and revealed the presence of hydrogen and helium, but no water vapour. 

These results were only made possible by exploiting a newly-developed processing technique.

This is a very exciting result because it’s the first time that we have been able to find the spectral fingerprints that show the gases present in the atmosphere of a super-Earth,” explains Angelos Tsiaras, a PhD student at UCL, who developed the analysis technique along with his colleagues Ingo Waldmann and Marco Rocchetto. “The observations of 55 Cancri e’s atmosphere suggest that the planet has managed to cling on to a significant amount of hydrogen and helium from the nebula from which it originally formed.

Super-Earths like 55 Cancri e are thought to be the most common type of planet in our galaxy. They acquired the name ‘super-Earth’ because they have a mass larger than that of the Earth but are still much smaller than the gas giants in the Solar System. The WFC3 instrument on Hubble has already been used to probe the atmospheres of two other super-Earths, but no spectral features were found in those previous studies [2].

55 Cancri e, however, is an unusual super-Earth as it orbits very close to its parent star. A year on the exoplanet lasts for only 18 hours and temperatures on the surface are thought to reach around 2000 degrees Celsius. Because the exoplanet is orbiting its bright parent star at such a small distance, the team was able to use new analysis techniques to extract information about the planet, during its transits in front of the host star.
Observations were made by scanning the WFC3 very quickly across the star to create a number of spectra. 

By combining these observations and processing them through analytic software, the researchers were able to retrieve the spectrum of 55 Cancri e embedded in the light of its parent star.

This result gives a first insight into the atmosphere of a super-Earth. We now have clues as to what the planet is currently like and how it might have formed and evolved, and this has important implications for 55 Cancri e and other super-Earths,” said Giovanna Tinetti, also from UCL, UK.

Intriguingly, the data also contain hints of the presence of hydrogen cyanide, a marker for carbon-rich atmospheres.

Such an amount of hydrogen cyanide would indicate an atmosphere with a very high ratio of carbon to oxygen,” said Olivia Venot, KU Leuven, who developed an atmospheric chemical model of 55 Cancri e that supported the analysis of the observations.

If the presence of hydrogen cyanide and other molecules is confirmed in a few years time by the next generation of infrared telescopes, it would support the theory that this planet is indeed carbon rich and a very exotic place,” concludes Jonathan Tennyson, UCL. “Although hydrogen cyanide, or prussic acid, is highly poisonous, so it is perhaps not a planet I would like to live on!


[1] 55 Cancri e has previously been dubbed the “diamond planet” because models based on its mass and radius have led to the idea that its interior is carbon-rich.
[2] Hubble observed the super-Earths GJ1214b and HD97658b in 2014, using the transit method. The observations did not show any spectral features, indicating an atmosphere covered by thick clouds made of molecular species much heavier than hydrogen.

More Information

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

The results were summarized by Tsiaras et al. in the paper “Detection of an atmosphere around the super-Earth 55 Cancri e” which is going to be published in the Astrophysical Journal.

The team of astronomers in this study consists of A. Tsiaras (UCL, UK), M. Rocchetto (UCL, UK), I. P. Waldmann (UCL, UK), O. Venot (Katholieke Universiteit Leuven, Belgium), R. Varley (UCL, UK), G. Morello (UCL, UK), G. Tinetti (UCL, UK), E. J. Barton (UCL, UK), S. N. Yurchenko (UCL, UK), J. Tennyson (UCL, UK).

University College London was founded in 1826. It was the first English university established after Oxford and Cambridge, the first to open up university education to those previously excluded from it, and the first to provide systematic teaching of law, architecture and medicine. UCL is among the world’s top universities, as reflected by performance in a range of international rankings and tables. UCL currently has over 35 000 students from 150 countries and over 11 000 staff.



Angelos Tsiaras
United Kingdom
Tel: +44 (0)20 3549 5844

Giovanna Tinetti
United Kingdom
Tel: +44 (0) 7912509617

Olivia Venot
KU Leuven

Mathias Jäger
ESA/Hubble, Public Information Officer
Garching, Germany
Tel: +49 176 62397500

Tuesday, February 16, 2016

B3 0727+409: Glow from the Big Bang Allows Discovery of Distant Black Hole Jet

 B3 0727+409
Credit  X-ray: NASA/CXC/ISAS/A.Simionescu et al, Optical: DSS

A jet from a very distant black hole being illuminated by the leftover glow from the Big Bang, known as the cosmic microwave background (CMB), has been found as described in our latest press release. Astronomers using NASA's Chandra X-ray Observatory discovered this faraway jet serendipitously when looking at another source in Chandra's field of view.

Jets in the early Universe such as this one, known as B3 0727+409, give astronomers a way to probe the growth of black holes at a very early epoch in the cosmos. The light from B3 0727+409 was emitted about 2.7 billion years after the Big Bang when the Universe was only about one fifth of its current age.

This main panel graphic shows Chandra's X-ray data that have been combined with an optical image from the Digitized Sky Survey. (Note that the two sources near the center of the image do not represent a double source, but rather a coincidental alignment of the distant jet and a foreground galaxy.)

The inset shows more detail of the X-ray emission from the jet detected by Chandra. The length of the jet in 0727+409 is at least 300,000 light years. Many long jets emitted by supermassive black holes have been detected in the nearby Universe, but exactly how these jets give off X-rays has remained a matter of debate. In B3 0727+409, it appears that the CMB is being boosted to X-ray wavelengths.

Scientists think that as the electrons in the jet fly from the black hole at close to the speed of light, they move through the sea of CMB radiation and collide with microwave photons. This boosts the energy of the photons up into the X-ray band to be detected by Chandra. If this is the case, it implies that the electrons in the B3 0727+409 jet must keep moving at nearly the speed of light for hundreds of thousands of light years.

The significance of this discovery is heightened because astronomers essentially stumbled across this jet while observing a galaxy cluster in the field. Historically, such distant jets have been discovered in radio waves first, and then followed up with X-ray observations to look for high-energy emission. If bright X-ray jets can exist with very faint or undetected radio counterparts, it means that there could be many more of them out there because astronomers haven't been systematically looking for them.

A paper describing these results was published in the 2016 January 1st issue of The Astrophysical Journal Letters and is available online. The authors are Aurora Simionescu (Institute of Space and Astronautical Science, Kanagawa, Japan), Lukasz Stawarz (Jagiellonian University, Kraków, Poland), Yuto Ichinohe (Institute of Space and Astronautical Science, Kanagawa, Japan), Teddy Cheung (Naval Research Laboratory, Washington, DC), Marek Jamrozy (Jagiellonian University, Kraków, Poland), Aneta Siemiginowska (Harvard-Smithsonian Center for Astrophysics, Cambridge, MA), Kouichi Hagino (Institute of Space and Astronautical Science, Kanagawa, Japan), Poshak Gandhi (University of Southampton, Southampton, UK) and Norbert Werner (Stanford University, Stanford, CA).

NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.

Fast Facts for B3 0727+409:

Scale: Main image is 10 arcmin across (16 million light years); Inset image is 46 arcsec across (1.23 million light years)
Coordinates (J2000): RA 07h 30m 48.00s | Dec +40° 51' 10.00"
Constellation: Lynx
Observation Date: 15 Dec 2015
Observation Time: 5 hours 33 min.
Obs. ID: 17167
Instrument: ACIS
References: Simionescu, A. et al, 2015, ApJ, 816, 15; arXiv:1509.04822
Color Code: X-ray (Blue), Optical (Red, Green, Blue)
Distance Estimate: About 11.075 billion light years (z = 2.5)

Galactic Space Oddity Discovered

An international team of researchers led by Aaron Romanowsky of San José State University has used the Subaru Telescope to identify a faint dwarf galaxy disrupting around a nearby giant spiral galaxy. The observations provide a valuable glimpse of a process that is fleeting but important in shaping galaxies.

"The outer regions of giant galaxies like our own Milky Way appear to be a jumble of debris from hundreds of smaller galaxies that fell in over time and splashed into smithereens," said Romanowsky. "These dwarfs are considered building blocks of the giants, but the evidence for giants absorbing dwarfs has been largely circumstantial. Now we have caught a pair of galaxies in the act of a deadly embrace." (Figure 1)

Figure 1: The giant spiral galaxy NGC 253 (shown in color) is accompanied by a newly discovered dwarf galaxy, NGC 253-dw2 (at upper left). The peculiar, elongated shape of the dwarf implies it is being torn apart by the gravity of the bigger galaxy – which in turn shows irregularities on its periphery that may be caused by the mutual interaction. Click here for the original tiff file. (Image credit: Copyright © 2015 R. Jay GaBany ( & Michael Sidonio. Insert image: R. Jay GaBany & Johannes Schedler.)

The two objects in the study are NGC 253, also called the Silver Dollar galaxy, and the newly discovered dwarf NGC 253-dw2. They are located in the Southern constellation of Sculptor at a distance of 11 million light years from Earth, and are separated from each other by about 160 thousand light years. The dwarf has an elongated appearance that is the hallmark of being stretched apart by the gravity of a larger galaxy.

The dwarf has been trapped by its giant host and will not survive intact for much longer," said team member Nicolas Martin, of the Strasbourg Observatory. "The next time it plunges closer to its host, it could be shredded into oblivion. However, the host may suffer some damage too, if the dwarf is heavy enough."

The interplay between the two galaxies may resolve an outstanding mystery about NGC 253, as the giant spiral shows signs of being disturbed by a dwarf. The disturber was previously unseen and presumed to have perished, but now the likely culprit has been found. "This looks like a case of galactic stealth attack," said Gustavo Morales of Heidelberg University. "The dwarf galaxy has dived in from the depths of space and barraged the giant, while remaining undetected by virtue of its extreme faintness."

The discovery of NGC 253-dw2 has an unusual pedigree. It began with a digital image of the giant galaxy taken by astrophotographer Michael Sidonio using a 30 centimeter (12 inch) diameter amateur telescope in Australia. Other members of the international team noticed a faint smudge in the image and followed it up with a larger, 80 centimeter (30 inch) amateur telescope in Chile, led by Johannes Schedler. The identity of the object was still not clear, and it was observed with the 8 meter (27 foot) Subaru Telescope on the summit of Mauna Kea in Hawaii, in December 2014. "In the first image, we weren't sure if there was really a faint galaxy or if it was some kind of stray reflection," said David Martínez-Delgado, also from Heidelberg University. "With the high-quality imaging of the Suprime-Cam instrument on the Subaru Telescope, we can now see that the smudge is composed of individual stars and is a bona fide dwarf galaxy. This discovery is a wonderful example of fruitful collaboration between amateur and professional astronomers." (Figure 2)

Figure 2: Close-up view of the dwarf galaxy NGC 253-dw2. The closely packed red dots show that it is composed of individual stars. Click here for the original tiff file. (Image credit: Copyright © 2015 R. Jay GaBany (, Zachary Jennings (University of California, Santa Cruz), and National Astronomical Observatory of Japan (NAOJ)).

The findings are in research paper published in the Monthly Notices of the Royal Astronomical Society Letters by Oxford University Press, as "Satellite accretion in action: a tidally disrupting dwarf spheroidal around the nearby spiral galaxy NGC 253" by Romanowsky et al., first online on January 23, 2016 (

The research team:

  • Aaron J. Romanowsky (San José State University and University of California Observatories, USA)
  • David Martínez-Delgado (Zentrum für Astronomie der Universität Heidelberg, Germany)
  • Nicolas F. Martin (Université de Strasbourg, France and Max-Planck-Institut für Astronomie, Germany)
  • Gustavo Morales (Zentrum für Astronomie der Universität Heidelberg, Germany)
  • Zachary G. Jennings (University of California, USA)
  • R. Jay GaBany (Black Bird Observatory II, USA)
  • Jean P. Brodie (University of California Observatories and University of California, USA)
  • Eva K. Grebel (Zentrum für Astronomie der Universität Heidelberg, Germany)
  • Johannes Schedler (Cerro Tololo Inter-American Observatory, Chile)
  • Michael Sidonio (Terroux Observatory, Australia)