Friday, February 27, 2009

Geriatric Pulsar Still Kicking

Artist concept of ancient pulsar J0108
Image credit: X-ray: NASA/CXC/Penn State/G.Pavlov et al.
Optical: ESO/VLT/UCL/R.Mignani et al. Illustration: CXC/M. Weiss

The oldest isolated pulsar ever detected in X-rays has been found with NASA's Chandra X-ray Observatory. This very old and exotic object turns out to be surprisingly active.

The pulsar, PSR J0108-1431 (J0108 for short) is about 200 million years old. Among isolated pulsars -- ones that have not been spun-up in a binary system -- it is over 10 times older than the previous record holder with an X-ray detection. At a distance of 770 light years, it is one of the nearest pulsars known.

Pulsars are born when stars that are much more massive than the Sun collapse in supernova explosions, leaving behind a small, incredibly weighty core, known as a neutron star. At birth, these neutron stars, which contain the densest material known in the Universe, are spinning rapidly, up to a hundred revolutions per second. As the rotating beams of their radiation are seen as pulses by distant observers, similar to a lighthouse beam, astronomers call them "pulsars".

Astronomers observe a gradual slowing of the rotation of the pulsars as they radiate energy away. Radio observations of J0108 show it to be one of the oldest and faintest pulsars known, spinning only slightly faster than one revolution per second.

The surprise came when a team of astronomers led by George Pavlov of Penn State University observed J0108 in X-rays with Chandra. They found that it glows much brighter in X-rays than was expected for a pulsar of such advanced years.

Some of the energy that J0108 is losing as it spins more slowly is converted into X-ray radiation. The efficiency of this process for J0108 is found to be higher than for any other known pulsar.

"This pulsar is pumping out high-energy radiation much more efficiently than its younger cousins," said Pavlov. "So, although it's clearly fading as it ages, it is still more than holding its own with the younger generations."

It's likely that two forms of X-ray emission are produced in J0108: emission from particles spiraling around magnetic fields, and emission from heated areas around the neutron star's magnetic poles. Measuring the temperature and size of these heated regions can provide valuable insight into the extraordinary properties of the neutron star surface and the process by which charged particles are accelerated by the pulsar.

The younger, bright pulsars commonly detected by radio and X-ray telescopes are not representative of the full population of objects, so observing objects like J0108 helps astronomers see a more complete range of behavior. At its advanced age, J0108 is close to the so- called “pulsar death line,” where its pulsed radiation is expected to switch off and it will become much harder, if not impossible, to observe.

"We can now explore the properties of this pulsar in a regime where no other pulsar has been detected outside the radio range," said co- author Oleg Kargaltsev of the University of Florida. "To understand the properties of ‘dying pulsars,’ it is important to study their radiation in X-rays. Our finding that a very old pulsar can be such an efficient X-ray emitter gives us hope to discover new nearby pulsars of this class via their X-ray emission."

The Chandra observations were reported by Pavlov and colleagues in the January 20, 2009, issue of The Astrophysical Journal. However, the extreme nature of J0108 was not fully apparent until a new distance to it was reported on February 6 in the PhD thesis of Adam Deller from Swinburne University in Australia. The new distance is both larger and more accurate than the distance used in the Chandra paper, showing that J0108 was brighter in X-rays than previously thought.

"Suddenly this pulsar became the record holder for its ability to make X-rays," said Pavlov, "and our result became even more interesting without us doing much extra work." The position of the pulsar seen by Chandra in X-rays in early 2007 is slightly different from the radio position observed in early 2001. This implies that the pulsar is moving at a velocity of about 440,000 miles per hour, close to a typical value for pulsars.

Currently the pulsar is moving south from the plane of the Milky Way galaxy, but because it is moving more slowly than the escape velocity of the Galaxy, it will eventually curve back towards the plane of the Galaxy in the opposite direction.

The detection of this motion has allowed Roberto Mignani of University College London, in collaboration with Pavlov and Kargaltsev, to possibly detect J0108 in optical light, using estimates of where it should be found in an image taken in 2000. Such a multi-wavelength study of old pulsars is critical for understanding the long-term evolution of neutron stars, such as how they cool with time, and how their powerful magnetic fields evolve.

The team of astronomers that worked with Pavlov also included Gordon Garmire and Jared Wong at Penn State. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

Additional information and images about this discovery is available on the Web at:
Kimberly D. Newton, 256-544-0034
Marshall Space Flight Center, Huntsville, Ala.
Kimberly.D.Newton@nasa.gov

Megan Watzke 617-496-7998
Chandra X-ray Center, Cambridge, Mass.
m.watzke@cfa.harvard.edu

Colors of Quasars Reveal a Dusty Universe

Credit: The Sloan Digital Sky Survey

About this image: Spiral galaxies seen edge-on often show dark lanes of interstellar dust blocking light from the galaxy's stars, as in this image of the galaxy NGC 4565 from the Sloan Digital Sky Survey (SDSS-II). The dust is formed in the outer regions of dying stars, and it drifts off to mix with interstellar gas.
The new analysis of quasar colors shows that galaxies also expel dust to distances of several hundred thousand light years, ten times farther than the visible edge of the galaxy seen in this image. The thin haze of intergalactic dust dims and reddens the light from background quasars.

The vast expanses of intergalactic space appear to be filled with a haze of tiny, smoke-like "dust" particles that dim the light from distant objects and subtly change their colors, according to a team of astronomers from the Sloan Digital Sky Survey (SDSS-II).

"Galaxies contain lots of dust, most of it formed in the outer regions of dying stars," said team leader Brice Ménard of the Canadian Institute for Theoretical Astrophysics. "The surprise is that we are seeing dust hundreds of thousands of light-years outside of the galaxies, in intergalactic space."

The new findings are reported in a paper titled "Measuring the galaxy-mass and galaxy-dust correlations through magnification and reddening," submitted to the journal Monthly Notices of the Royal Astronomical Society, and posted today on the web site arXiv.org.

To discover this intergalactic dust, the team analyzed the colors of distant quasars whose light passes in the vicinity of foreground galaxies on its way to the Earth.

Dust grains block blue light more effectively than red light, explained astronomer Ryan Scranton of the University of California, Davis, another member of the discovery team. "We see this when the sun sets: light rays pass through a thicker layer of the atmosphere, absorbing more and more blue light, causing the sun to appear reddened. We find similar reddening of quasars from intergalactic dust, and this reddening extends up to ten times beyond the apparent edges of the galaxies themselves."

The team analyzed the colors of about 100,000 distant quasars located behind 20 million galaxies, using images from SDSS-II. "Putting together and analyzing this huge dataset required cutting-edge ideas from computer science and statistics," said team member Gordon Richards of Drexel University. "Averaging over so many objects allowed us to measure an effect that is much too small to see in any individual quasar."

Supernova explosions and "winds" from massive stars drive gas out of some galaxies, Ménard explained, and this gas may carry dust with it. Alternatively, the dust may be pushed directly by starlight.

"Our findings now provide a reference point for theoretical studies," said Ménard.

Intergalactic dust could also affect planned cosmological experiments that use supernovae to investigate the nature of "dark energy," a mysterious cosmic component responsible for the acceleration of the expansion of the universe.

"Just like household dust, cosmic dust can be a nuisance," said Scranton. "Our results imply that most distant supernovae are seen through a bit of haze, which may affect estimates of their distances."

Intergalactic dust doesn't remove the need for dark energy to explain current supernova data, Ménard explained, but it may complicate the interpretation of future high-precision distance measurements. "These experiments are very ambitious in their goals," said Ménard, "and subtle effects matter."

About the Sloan Digital Sky Survey (SDSS)

The Sloan Digital Sky Survey is the most ambitious survey of the sky ever undertaken, involving more than 300 astronomers and engineers at 25 institutions around the world. SDSS-II, which began in 2005 and finished observations in July, 2008, is comprised of three complementary projects. The Legacy Survey completed the original SDSS map of half the northern sky, determining the positions, brightness, and colors of hundreds of millions of celestial objects and measuring distances to more than a million galaxies and quasars. SEGUE (Sloan Extension for Galactic Understanding and Exploration) mapped the structure and stellar makeup of the Milky Way Galaxy. The Supernova Survey repeatedly scanned a stripe along the celestial equator to discover and measure supernovae and other variable objects, probing the accelerating expansion of the cosmos. All three surveys were carried out with special purpose instruments on the 2.5-meter telescope at Apache Point Observatory, in New Mexico.
Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/.

SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The SDSS-II Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.

Contacts:
  • Brice Ménard, Canadian Institute for Theoretical Astrophysics, University of Toronto, 416-978-3863, menard@cita.utoronto.ca
  • Jordan Raddick, SDSS Public Information Officer, Sloan Digital Sky Survey, 410-516-8889, raddick@pha.jhu.edu

Wednesday, February 25, 2009

NASA Announces 2009 Astronomy and Astrophysics Fellows


NASA has selected fellows in three areas of astronomy and astrophysics for its Einstein, Hubble, and Sagan Fellowships. The recipients of this year's postdoctoral fellowships will conduct independent research at institutions around the country.

"The new fellows are among the best and brightest young astronomers in the world," said Jon Morse, director of the Astrophysics Division in NASA's Science Mission Directorate in Washington. "They already have contributed significantly to studies of how the universe works, the origin of our cosmos and whether we are alone in the cosmos. The fellowships will serve as a springboard for scientific leadership in the years to come, and as an inspiration for the next generation of students and early career researchers."

Each fellowship provides support to the awardees for three years. The fellows may pursue their research at any host university or research center of their choosing in the United States. The new fellows will begin their programs in the fall of 2009.

"I cannot tell you how much I am looking forward to spending the next few years conducting research in the U.S., thanks to the fellowships," said Karin Oberg, a graduate student in Leiden, The Netherlands. Oberg will study the evolution of water and ices during star formation when she starts her fellowship at the Smithsonian Astrophysical Observatory in Cambridge, Mass.

A diverse group of 32 young scientists will work on a wide variety of projects, such as understanding supernova hydrodynamics, radio transients, neutron stars, galaxy clusters and the intercluster medium, supermassive black holes, their mergers and the associated gravitational waves, dark energy, dark matter and the reionization process. Other research topics include searching for transits among hot Neptunes and super-Earths, microlensing planets through modeling algorithms, conducting high-contrast imaging surveys to detect planetary-mass companions, interferometrically imaging of the inner regions of protoplanetary disks, and modeling of super-Earth planetary atmospheres.

The 17 awardees of the Hubble Fellowship pursue research associated with NASA's "Cosmic Origins Program." The missions in this program examine the origins of galaxies, stars, and planetary systems, and the evolution of these structures with cosmic time. The Hubble Fellowships are administered for NASA by the Space Telescope Science Institute in Baltimore, Md.

The 2009 Hubble Fellows are:

NamePh.D. InstitutionHost Institution
Stephen AmmonsUniv. of California, Santa Cruz, 2009Univ. of Arizona
Misty BentzOhio State Univ., 2007Univ. of California, Irvine
Tabetha BoyajianGeorgia State Univ., 2009Georgia State Univ.
Kevin CoveyUniv. of Washington, 2006Cornell Univ.
Kristian FinlatorUniv. of Arizona, 2009Univ. of California, Santa Barbara
Mario JuricPrinceton Univ., 2007Harvard Univ.
Evan KirbyUniv. of California, Santa Cruz, 2009Caltech
Adam KrausCaltech, 2009Univ. of Hawaii
Adam LeroyUniv. of Califronia, Berkeley, 2006NRAO
Daniel MarroneHarvard Univ., 2006Univ. of Chicago
Karin ObergLeiden Univ., 2009Smithsonian Astrophysical Observ.
Jose PrietoOhio State Univ., 2009OCIW, Pasadena
Brant RobertsonHarvard Univ., 2006Caltech
Lisa WinterUniv. of Maryland, 2008Univ. of Colorado, Boulder
John WiseStanford Univ., 2007Princeton Univ.
Shelley WrightUniv. of California, Los Angeles, 2008Univ. of California, Berkeley
Joshua YoungerHarvard Univ., 2009Inst. for Advanced Study

The ten Fellows in the Einstein program conduct research that is broadly related to the mission of NASA's "Physics of the Cosmos Program." Its science goals include understanding the origin and destiny of the universe, the nature of gravity, phenomena near black holes, and extreme states of matter. The Einstein Fellowships are administered for NASA by the Chandra X-ray Center in Cambridge, Mass.

The Sagan Fellowship, which was created in September 2008, supports five scientists whose research is aligned with NASA's "Exoplanet Exploration Program." The primary goal of this program is to discover and characterize planetary systems and Earth-like planets around other stars. The Sagan Fellowship Program is administered by the NASA Exoplanet Science Institute, which is operated at the California Institute of Technology in coordination with NASA's Jet Propulsion Laboratory, in Pasadena, Calif.

A full list of the 2009 fellows and other information about these programs is available at:

http://cxc.harvard.edu/fellows
http://www.stsci.edu/institute/org/spd/hubble-fellowship/
http://nexsci.caltech.edu/sagan/fellowship.shtml

For more information about NASA's Astrophysics Division, visit:
http://nasascience.nasa.gov/astrophysics

Into the Eye of the Helix

ESO PR Photo 07a/09
The Helix Nebula
(1)

(1)This colour-composite image of the Helix Nebula (NGC 7293) was created from images obtained using the the Wide Field Imager (WFI), an astronomical camera attached to the 2.2-metre Max-Planck Society/ESO telescope at the La Silla observatory in Chile. The blue-green glow in the centre of the Helix comes from oxygen atoms shining under effects of the intense ultraviolet radiation of the 120 000 degree Celsius central star and the hot gas. Further out from the star and beyond the ring of knots, the red colour from hydrogen and nitrogen is more prominent. A careful look at the central part of this object reveals not only the knots, but also many remote galaxies seen right through the thinly spread glowing gas.
This image was created from images through blue, green and red filters and the total exposure times were 12 minutes, 9 minutes and 7 minutes respectively.

ESO PR Video 06a/09
Helix Nebula Zoom-in

Pan over the Helix Nebula

ESO PR Video 06c/09
Zoom and pan over the Helix Nebula

A deep new image of the magnificent Helix planetary nebula has been obtained using the Wide Field Imager at ESO's La Silla Observatory. The image shows a rich background of distant galaxies, usually not seen in other images of this object.

The Helix Nebula, NGC 7293, lies about 700 light-years away in the constellation of Aquarius (the Water Bearer). It is one of the closest and most spectacular examples of a planetary nebula. These exotic objects have nothing to do with planets, but are the final blooming of Sun-like stars before their retirement as white dwarfs. Shells of gas are blown off from a star’s surface, often in intricate and beautiful patterns, and shine under the harsh ultraviolet radiation from the faint, but very hot, central star. The main ring of the Helix Nebula is about two light-years across or half the distance between the Sun and its closest stellar neighbour.

Despite being photographically very spectacular the Helix is hard to see visually as its light is thinly spread over a large area of sky and the history of its discovery is rather obscure. It first appears in a list of new objects compiled by the German astronomer Karl Ludwig Harding in 1824. The name Helix comes from the rough corkscrew shape seen in the earlier photographs.

Although the Helix looks very much like a doughnut, studies have shown that it possibly consists of at least two separate discs with outer rings and filaments. The brighter inner disc seems to be expanding at about 100 000 km/h and to have taken about 12 000 years to have formed.

Because the Helix is relatively close — it covers an area of the sky about a quarter of the full Moon — it can be studied in much greater detail than most other planetary nebulae and has been found to have an unexpected and complex structure. All around the inside of the ring are small blobs, known as “cometary knots”, with faint tails extending away from the central star. They look remarkably like droplets of liquid running down a sheet of glass. Although they look tiny, each knot is about as large as our Solar System. These knots have been extensively studied, both with the ESO Very Large Telescope and with the NASA/ESA Hubble Space Telescope, but remain only partially understood. A careful look at the central part of this object reveals not only the knots, but also many remote galaxies seen right through the thinly spread glowing gas. Some of these seem to be gathered in separate galaxy groups scattered over various parts of the image.

More information
Contact
Henri Boffin
ESO Public Information Officer
ESO, Garching, Germany
Phone: +49 89 3200 6222
E-mail: hboffin@eso.org

ESO Press Officer in Chile: Valentina Rodriguez - +56 2 463 3123 - vrodrigu@eso.org

Friday, February 20, 2009

NASA's Swift Spies Comet Lulin

This image of Comet Lulin taken Jan. 28 merges data acquired by Swift's Ultraviolet/Optical Telescope (blue and green) and X-Ray Telescope (red). At the time of the observation, the comet was 99.5 million miles from Earth and 115.3 million miles from the sun.
Credit: NASA/Swift/Univ. of Leicester/Bodewits et al.
Large Image
Large Labeled Image

Comet Lulin was passing through the constellation Libra when Swift imaged it. This view merges the Swift data with a Digital Sky Survey image of the star field.
Credit: NASA/Swift/Univ. of Leicester/DSS (STScI, AURUA)/Bodewits et al.
While waiting for high-energy outbursts and cosmic explosions, NASA's Swift Gamma-ray Explorer satellite is monitoring Comet Lulin as it closes on Earth. For the first time, astronomers are seeing simultaneous ultraviolet and X-ray images of a comet.

"We won't be able to send a space probe to Comet Lulin, but Swift is giving us some of the information we would get from just such a mission," said Jenny Carter, at the University of Leicester, U.K., who is leading the study.

"The comet is releasing a great amount of gas, which makes it an ideal target for X-ray observations," said Andrew Read, also at Leicester.

A comet is a clump of frozen gases mixed with dust. These "dirty snowballs" cast off gas and dust whenever they venture near the sun. Comet Lulin, which is formally known as C/2007 N3, was discovered last year by astronomers at Taiwan's Lulin Observatory. The comet is now faintly visible from a dark site. Lulin will pass closest to Earth -- 38 million miles, or about 160 times farther than the moon -- late on the evening of Feb. 23 for North America.

On Jan. 28, Swift trained its Ultraviolet/Optical Telescope (UVOT) and X-Ray Telescope (XRT) on Comet Lulin. "The comet is quite active," said team member Dennis Bodewits, a NASA Postdoctoral Fellow at the Goddard Space Flight Center in Greenbelt, Md. "The UVOT data show that Lulin was shedding nearly 800 gallons of water each second." That's enough to fill an Olympic-size swimming pool in less than 15 minutes.

Swift can't see water directly. But ultraviolet light from the sun quickly breaks apart water molecules into hydrogen atoms and hydroxyl (OH) molecules. Swift's UVOT detects the hydroxyl molecules, and its images of Lulin reveal a hydroxyl cloud spanning nearly 250,000 miles, or slightly greater than the distance between Earth and the moon.

The UVOT includes a prism-like device called a grism, which separates incoming light by wavelength. The grism's range includes wavelengths in which the hydroxyl molecule is most active. "This gives us a unique view into the types and quantities of gas a comet produces, which gives us clues about the origin of comets and the solar system," Bodewits explains. Swift is currently the only space observatory covering this wavelength range.

In the Swift images, the comet's tail extends off to the right. Solar radiation pushes icy grains away from the comet. As the grains gradually evaporate, they create a thin hydroxyl tail.

Farther from the comet, even the hydroxyl molecule succumbs to solar ultraviolet radiation. It breaks into its constituent oxygen and hydrogen atoms. "The solar wind -- a fast-moving stream of particles from the sun -- interacts with the comet's broader cloud of atoms. This causes the solar wind to light up with X rays, and that's what Swift's XRT sees," said Stefan Immler, also at Goddard.

This interaction, called charge exchange, results in X-rays from most comets when they pass within about three times Earth's distance from the sun. Because Lulin is so active, its atomic cloud is especially dense. As a result, the X-ray-emitting region extends far sunward of the comet.

"We are looking forward to future observations of Comet Lulin, when we hope to get better X-ray data to help us determine its makeup," noted Carter. "They will allow us to build up a more complete 3-D picture of the comet during its flight through the solar system."

Other members of the team include Michael Mumma and Geronimo Villanueva at Goddard.

NASA's Goddard Space Flight Center in Greenbelt, Md., manages the Swift satellite. It is being operated in collaboration with partners in the U.S., the United Kingdom, Italy, Germany and Japan. NASA's Fermi Gamma-ray Space Telescope is an astrophysics and particle physics observatory developed in collaboration with the U.S. Department of Energy and with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden, and the U.S.

Francis Reddy
NASA's Goddard Space Flight Center

Thursday, February 19, 2009

New Recipe for Dwarf Galaxies: Start with Leftover Gas

Credit: NASA/JPL-Caltech/DSS

There is more than one way to make a dwarf galaxy, and NASA's Galaxy Evolution Explorer has found a new recipe. The spacecraft has, for the first time, identified dwarf galaxies forming out of nothing more than pristine gas likely leftover from the early universe. Dwarf galaxies are relatively small collections of stars that often orbit around larger galaxies like our Milky Way.

The findings surprised astronomers because most galaxies form in association with a mysterious substance called dark matter or out of gas containing metals. The infant galaxies spotted by the Galaxy Evolution Explorer are springing up out of gas that lacks both dark matter and metals. Though never seen before, this new type of dwarf galaxy may be common throughout the more distant and early universe, when pristine gas was more pervasive.

Astronomers spotted the unexpected new galaxies forming inside the Leo Ring, a huge cloud of hydrogen and helium that traces a ragged path around two massive galaxies in the constellation Leo. The cloud is thought likely to be a primordial object, an ancient remnant of material that has remained relatively unchanged since the very earliest days of the universe. Identified about 25 years ago by radio waves, the ring cannot be seen in visible light.

"This intriguing object has been studied for decades with world-class telescopes operating at radio and optical wavelengths," said David Thilker of Johns Hopkins University, Baltimore, Md. "Despite such effort, nothing except the gas was detected. No stars at all, young or old, were found. But when we looked at the ring with the Galaxy Evolution Explorer, which is remarkably sensitive to ultraviolet light, we saw telltale evidence of recent massive star formation. It was really unexpected. We are witnessing galaxies forming out of a cloud of primordial gas."

In a recent study, Thilker and his colleagues found the ultraviolet signature of young stars emanating from several clumps of gas within the Leo Ring. "We speculate that these young stellar complexes are dwarf galaxies, although, as previously shown by radio astronomers, the gaseous clumps forming these galaxies lack dark matter," he said. "Almost all other galaxies we know are dominated by dark matter, which acted as a seed for the collection of their luminous components — stars, gas and dust. What we see occurring in the Leo Ring is a new mode for the formation of dwarf galaxies in material remaining from the much earlier assembly of this galaxy group."

Our local universe contains two large galaxies, the Milky Way and the Andromeda galaxy, each with hundreds of billions of stars, and the Triangulum galaxy, with several tens of billions of stars. It also holds more than 40 much smaller dwarf galaxies, which have only a few billion stars. Invisible dark matter, detected by its gravitational influence, is a major component of both giant and dwarf galaxies with one exception — tidal dwarf galaxies.

Tidal dwarf galaxies condense out of gas recycled from other galaxies and have been separated from most of the dark matter with which they were originally associated. They are produced when galaxies collide and their gravitational masses interact. In the violence of the encounter, streamers of galactic material are pulled out away from the parent galaxies and the halos of dark matter that surround them.

Because they lack dark matter, the new galaxies observed in the Leo Ring resemble tidal dwarf galaxies, but they differ in a fundamental way. The gaseous material making up tidal dwarfs has already been cycled through a galaxy. It has been enriched with metals — elements heavier than helium — produced as stars evolve. "Leo Ring dwarfs are made of much more pristine material without metals," said Thilker. "This discovery allows us to study the star formation process in gas that has not yet been enriched."

Large, pristine clouds similar to the Leo Ring may have been more common throughout the early universe, Thilker said, and consequently may have produced many dark-matter-lacking, dwarf galaxies yet to be discovered.

The results of the new study reporting star formation in the Leo Ring appear in the February 19, 2009, issue of the journal Nature.

Caltech leads the Galaxy Evolution Explorer mission and is responsible for science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program managed by the Goddard Space Flight Center, Greenbelt, Md. South Korea and France are the international partners in the mission.

Media Contacts:
Whitney Clavin 818-354-4673
Jet Propulsion Laboratory, Pasadena, Calif.

Wednesday, February 18, 2009

Hundred metre virtual telescope captures unique detailed colour image

ESO PR Photo 06a/09
The star T Leporis as seen with VLTI

ESO PR Photo 06b/09
The star T Leporis to scale

The orbit of Theta1 Orionis C

ESO PR Photo 06c/09
A virtual 100-metre telescope

video
ESO PR Video 06a/09
Zoom-in onto T Leporis

A team of French astronomers has captured one of the sharpest colour images ever made. They observed the star T Leporis, which appears, on the sky, as small as a two-storey house on the Moon [1]. The image was taken with ESO's Very Large Telescope Interferometer (VLTI), emulating a virtual telescope about 100 metres across and reveals a spherical molecular shell around an aged star.

“This is one of the first images made using near-infrared interferometry,” says lead author Jean-Baptiste Le Bouquin. Interferometry is a technique that combines the light from several telescopes, resulting in a vision as sharp as that of a giant telescope with a diameter equal to the largest separation between the telescopes used. Achieving this requires the VLTI system components to be positioned to an accuracy of a fraction of a micrometre over about 100 metres and maintained so throughout the observations — a formidable technical challenge.

When doing interferometry, astronomers must often content themselves with fringes, the characteristic pattern of dark and bright lines produced when two beams of light combine, from which they can model the physical properties of the object studied. But, if an object is observed on several runs with different combinations and configurations of telescopes, it is possible to put these results together to reconstruct an image of the object. This is what has now been done with ESO’s VLTI, using the 1.8-metre Auxiliary Telescopes.

“We were able to construct an amazing image, and reveal the onion-like structure of the atmosphere of a giant star at a late stage of its life for the first time,” says Antoine Mérand, member of the team. “Numerical models and indirect data have allowed us to imagine the appearance of the star before, but it is quite astounding that we can now see it, and in colour.”

Although it is only 15 by 15 pixel across, the reconstructed image shows an extreme close-up of a star 100 times larger than the Sun, a diameter corresponding roughly to the distance between the Earth and the Sun. This star is, in turn, surrounded by a sphere of molecular gas, which is about three times as large again.

T Leporis, in the constellation of Lepus (the Hare), is located 500 light-years away. It belongs to the family of Mira stars, well known to amateur astronomers. These are giant variable stars that have almost extinguished their nuclear fuel and are losing mass. They are nearing the end of their lives as stars, and will soon die, becoming white dwarfs. The Sun will become a Mira star in a few billion years, engulfing the Earth in the dust and gas expelled in its final throes.

Mira stars are among the biggest factories of molecules and dust in the Universe, and T Leporis is no exception. It pulsates with a period of 380 days and loses the equivalent of the Earth’s mass every year. Since the molecules and dust are formed in the layers of atmosphere surrounding the central star, astronomers would like to be able to see these layers. But this is no easy task, given that the stars themselves are so far away — despite their huge intrinsic size, their apparent radius on the sky can be just half a millionth that of the Sun.

“T Leporis looks so small from the Earth that only an interferometric facility, such as the VLTI at Paranal, can take an image of it. VLTI can resolve stars 15 times smaller than those resolved by the Hubble Space Telescope,” says Le Bouquin.

To create this image with the VLTI astronomers had to observe the star for several consecutive nights, using all the four movable 1.8-metre VLT Auxiliary Telescopes (ATs). The ATs were combined in different groups of three, and were also moved to different positions, creating more new interferometric configurations, so that astronomers could emulate a virtual telescope approximately 100 metres across and build up an image.

“Obtaining images like these was one of the main motivations for building the Very Large Telescope Interferometer. We have now truly entered the era of stellar imaging,” says Mérand.

A perfect illustration of this is another VLTI image showing the double star system Theta1 Orionis C in the Orion Nebula Trapezium. This image, which was the first ever constructed from VLTI data, separates clearly the two young, massive stars from this system. The observations themselves have a spatial resolution of about 2 milli-arcseconds. From these, and several other observations, the team of astronomers, led by Stefan Kraus and Gerd Weigelt from the Max-Planck Institute in Bonn, could derive the properties of the orbit of this binary system, including the total mass of the two stars (47 solar masses) and their distance from us (1350 light-years).

Notes
[1] The VLTI will however not be able to observe the Moon as its surface is too big to produce the interference patterns necessary for this technique.

More information
These results are to appear in a Letter to the Editor in Astronomy and Astrophysics (J.-B. Le Bouquin et al., Pre-maximum spectro-imaging of the Mira star T Lep with AMBER/VLTI).

The team is composed of Jean-Baptiste Le Bouquin and Antoine Mérand (ESO), Sylvestre Lacour and Stéphanie Renard (LAOG, CNRS, Grenoble, France), and Eric Thiébaut (AIRI, Observatoire de Lyon, France).

The Theta1 Orionis C result is presented in an article to appear in Astronomy and Astrophysics (S. Kraus et al., Tracing the young massive high-eccentricity binary system Theta1 Orionis C through periastron passage).

Contacts
Jean-Baptiste Le Bouquin, Antoine Mérand
ESO, Chile
Phone: +56 2 463 3087, +56 2 463 3253
E-mail: jlebouqu@eso.org, amerand@eso.org

Stefan Kraus
Max-Planck-Institute for Radioastronomy
Bonn, Germany
Phone: +49 228 525 395
E-mail: skraus@mpifr-bonn.mpg.de

ESO La Silla - Paranal - ELT Press Officer:
Dr. Henri Boffin - +49 89 3200 6222 -
hboffin@eso.org
ESO Press Officer in Chile: Valentina Rodriguez - +56 2 463 3123 - vrodrigu@eso.org

Monday, February 16, 2009

Astronomers Unveiling Life's Cosmic Origins

The Cosmic Chemistry Cycle
Credit: Bill Saxton, NRAO/AUI/NSF
Release No: 2009-06

Processes that laid the foundation for life on Earth -- star and planet formation and the production of complex organic molecules in interstellar space -- are yielding their secrets to astronomers armed with powerful new research tools, and even better tools soon will be available. Astronomers described three important developments at a symposium on the "Cosmic Cradle of Life" at the annual meeting of the American Association for the Advancement of Science in Chicago, IL.

In one development, a team of astrochemists released a major new resource for seeking complex interstellar molecules that are the precursors to life. The chemical data released by Anthony Remijan of the National Radio Astronomy Observatory (NRAO) and his university colleagues is part of the Prebiotic Interstellar Molecule Survey, or PRIMOS, a project studying a star-forming region near the center of our Milky Way Galaxy.

PRIMOS is an effort of the National Science Foundation's Center for Chemistry of the Universe, started at the University of Virginia (UVa) in October 2008, and led by UVa Professor Brooks H. Pate. The data, produced by the NSF's Robert C. Byrd Green Bank Telescope (GBT) in West Virginia, came from more than 45 individual observations over 1.4 million individual frequency channels.

Scientists can search the GBT data for specific radio frequencies, called spectral lines -- telltale "fingerprints" -- naturally emitted by molecules in interstellar space. "We've identified more than 720 spectral lines in this collection, and about 240 of those are from unknown molecules," Remijan said. He added, "We're making available to all scientists the best collection of data below 50 GHz ever produced for the study of interstellar chemistry."

Astronomers have already identified more than 150 molecules in interstellar space in the past 40 years, including complex organic compounds such as sugars and alcohols. "This is a major change in how we search for molecules in space," Remijan explained. "Before, people decided beforehand which molecules they were looking for, then searched in a very narrow band of radio frequencies emitted by those molecules. In this GBT survey, we've observed a wide range of frequencies, collected the data and immediately made it publically available. Scientists anywhere can 'mine' this resource to find new molecules," he said.

Another key development, presented by Crystal Brogan of the NRAO, showed that highly detailed images of "protoclusters" of massive young stars reveal a complex mix of stars in different stages of formation, complicated gas motions, and numerous chemical clues to the physical conditions in such stellar nurseries. "We saw a much more complex picture than we had expected and now have new questions to answer," she said.

Using the Smithsonian Astrophysical Observatory's Submillimeter Array (SMA) in Hawaii, Brogan and her colleagues studied a nebula 5,500 light-years from Earth in the constellation Scorpius where stars significantly more massive than our Sun are forming. "It's essential to understand what's going on in systems like this because most stars, Sun-like stars included, form in clusters," Brogan said.

"The most massive stars in the cluster have a tremendous impact on the formation and environment of the rest of the cluster, including the less-massive stars and their planets," Brogan said, adding that "if we want to understand how solar systems that could support life form and evolve, we need to know how these giant stars affect their environment."

Also, Brogan said, the massive young stars are surrounded by "hot cores" that include copious organic material that later may be spewed into interstellar space by stellar winds and other processes. This can help "seed" star-forming regions with some of the chemicals found by the GBT and other telescopes.

Narrowing in on the problem of how planets form around young stars, David Wilner of the Harvard-Smithsonian Center for Astrophysics (CfA) presented observations with the SMA that revealed new details of solar systems in the earliest stages of their formation. Wilner and his colleagues studied nine dusty disks surrounding young stars in a region in the constellation Ophiuchus.

"These are the most detailed images of such disks made at these wavelengths," Wilner said. The images show the distribution of material on the same size scale as our own Solar System, and indicate that these disks are capable of producing planetary systems. Two of the disks show large central cavities where young planets may already have swept out the material from their neighborhoods.

"Before, we knew that such disks have enough material to form solar systems. These new images tell us that material is in the right places to form solar systems. We're getting a tantalizing peek at the very earliest stages of planet formation," said Sean Andrews, a Hubble Fellow at the CfA.

All three areas of study are poised for major advances with the impending arrival of powerful new radio-telescope facilities such as the Atacama Large Millimeter/submillimeter Array (ALMA) and the Expanded Very Large Array (EVLA), and new capabilities for the GBT.

Studies of protoplanetary disks and young solar systems will benefit greatly from the groundbreaking new capabilities of ALMA, Wilner said. "While we've been able to study a few of these objects so far, ALMA will be able to give us highly detailed images of many more that we can't study today," he said. Wilner added that ALMA also will likely provide new information on the chemicals in those still-forming planetary systems.

The complex motions and chemistry of Brogan's protoclusters of young, massive stars, also will become much clearer with ALMA. "Both the detail of the images and the ability to find molecular spectral lines will improve by a factor of at least 25 with ALMA," she said. In addition, the increased power of the EVLA will give astronomers a far better look into the inner regions of the disks around young stars -- regions obscured to telescopes operating at shorter wavelengths.

"We know that complex chemicals exist in interstellar space before stars and planets form. With the new research tools coming in the next few years, we're on the verge of learning how the chemistry of the interstellar clouds, the young stars and their environments, and the disks from which planets are formed is all linked together to provide the chemical basis for life on those planets," Remijan explained.

Astrophysicist Neil deGrasse Tyson of the American Museum of Natural History noted, "Like no other science, astrophysics cross-pollinates the expertise of chemists, biologists, geologists and physicists, all to discover the past, present, and future of the cosmos -- and our humble place within it."

This release is being issued jointly with NRAO.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
617-495-7462
daguilar@cfa.harvard.edu

Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
617-495-7463
cpulliam@cfa.harvard.edu

Friday, February 13, 2009

Stars cheek by jowl in the early Universe - RAS PN 09/4

About this image: An image of a UCD is available from the following web address: http://www.eso.org/~mhilker/pics/uni_fig3.jpg
Credit: The background image was taken by Dr Michael Hilker of the University of Bonn using the 2.5-metre Du Pont telescope, part of the Las Campanas Observatory in Chile. The two boxes show close-ups of two UCD galaxies in the Hilker image. These images were made using the Hubble Space Telescope by a team led by Professor Michael Drinkwater of the University of Queensland.

In our Galaxy, we are used to the idea that even the nearest stars are light years away from the Sun. But a team of scientists led by Professor Pavel Kroupa of the University of Bonn think things were very different in the early Universe. In particular, Ultra Compact Dwarf galaxies (UCDs), a recently discovered class of object, may have had stars a hundred times closer together than in the solar neighbourhood, according to calculations made by team member and PhD student Joerg Dabringhausen and presented in a paper in Monthly Notices of the Royal Astronomical Society.

UCDs were discovered in 1999. Although they are still enormous by everyday standards, at about 60 light years across, they are less than 1/1000th the diameter of our own Galaxy, the Milky Way. (In more familiar units, a light year is about 10 million million km). Astronomers believe that UCDs were created when more normal galaxies collided in the early Universe. But oddly, UCDs clearly have more mass than the light from the stars they contain would imply.

Up to now, exotic dark matter has been suggested to explain this ‘missing mass’, but this is not thought to gather in sufficient quantities within a UCD. In their paper Mr Dabringhausen, Professor Kroupa and their colleague Dr Holger Baumgardt present a different explanation.

The astronomers think that at one time, each UCD had an incredibly high density of stars, with perhaps 1 million in each cubic light year of space, compared with the 1 that we see in the region of space around the Sun. These stars would have been close enough to merge from time to time, creating many much more massive stars in their place. These more massive stars consume hydrogen (their nuclear fuel) much more rapidly, before ending their lives in violent supernova explosions. All that then remains is either a superdense neutron star or sometimes a black hole.

So in today’s UCDs, a good part of their mass is made up of these dark remnants, largely invisible to Earth-based telescopes but fossils of a more dramatic past.

Mr Dabringhausen comments, “Billions of years ago, UCDs must have been extraordinary. To have such a vast number of stars packed closely together is quite unlike anything we see today. An observer on a (hypothetical) planet inside a UCD would have seen a night sky as bright as day on Earth.”

CONTACTS

Joerg Dabringhausen
University of Bonn
Tel: +49 228 733 669
Mob: +49 173 954 7596
E-mail: joedab@astro.uni-bonn.de

Professor Pavel Kroupa
University of Bonn
Tel: +49 228 736 140
E-mail: pavel@astro.uni-bonn.de

THE ROYAL ASTRONOMICAL SOCIETY

The Royal Astronomical Society (RAS), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organizes scientific meetings, publishes international research and review journals, recognizes outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 3000 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others.

ROYAL ASTRONOMICAL SOCIETY PRESS INFORMATION NOTE
Date: 12th February 2009
For Immediate Release Ref.: PN 09/4

Issued by:

Dr Robert Massey
Press and Policy Officer
Royal Astronomical Society
Burlington House
Piccadilly
London W1J 0BQ
Tel: +44 (0)20 7734 4582
Mob: +44 (0)794 124 8035
E-mail: rm@ras.org.uk
Web: www.ras.org.uk

Thursday, February 12, 2009

Strong Winds over the Keel

ESO PR Photo 05a/09
The Carina Nebula


ESO PR Video 05a/09

Pan over the Carina Nebula



ESO PR Video 05b/09

Carina Nebula Zoom-in

Carina Nebula shown in colourful detail

The latest ESO image reveals amazing detail in the intricate structures of one of the largest and brightest nebulae in the sky, the Carina Nebula (NGC 3372), where strong winds and powerful radiation from an armada of massive stars are creating havoc in the large cloud of dust and gas from which the stars were born.

The large and beautiful image displays the full variety of this impressive skyscape, spattered with clusters of young stars, large nebulae of dust and gas, dust pillars, globules, and adorned by one of the Universe's most impressive binary stars. It was produced by combining exposures through six different filters from the Wide Field Imager (WFI), attached to the 2.2 m ESO/MPG telescope at ESO's La Silla Observatory, in Chile.

The Carina Nebula is located about 7500 light-years away in the constellation of the same name (Carina; the Keel). Spanning about 100 light-years, it is four times larger than the famous Orion Nebula and far brighter. It is an intensive star-forming region with dark lanes of cool dust splitting up the glowing nebula gas that surrounds its many clusters of stars.

The glow of the Carina Nebula comes mainly from hot hydrogen basking in the strong radiation of monster baby stars. The interaction between the hydrogen and the ultraviolet light results in its characteristic red and purple colour. The immense nebula contains over a dozen stars with at least 50 to 100 times the mass of our Sun. Such stars have a very short lifespan, a few million years at most, the blink of an eye compared with the Sun's expected lifetime of ten billion years.

One of the Universe's most impressive stars, Eta Carinae, is found in the nebula. It is one of the most massive stars in our Milky Way, over 100 times the mass of the Sun and about four million times brighter, making it the most luminous star known. Eta Carinae is highly unstable, and prone to violent outbursts, most notably the false supernova event in 1842. For just a few years, Eta Carinae became the second brightest star in the night sky and produced almost as much visible light as a supernova explosion (the usual death throes of a massive star), but it survived. Eta Carinae is also thought to have a hot companion that orbits around it in 5.54 years, in an elliptical orbit. Both stars have strong winds, which collide, leading to interesting phenomena. In mid-January 2009, the companion was at its closest distance to Eta Carinae. This event, which may provide a unique insight into the wind structure of the massive stars, has been followed by a flotilla of instruments on several of ESO's telescopes.

ESO La Silla - Paranal - ELT Press Officer:
Dr. Henri Boffin - +49 89 3200 6222 -
hboffin@eso.org

ESO Press Officer in Chile:
Valentina Rodriguez - +56 2 463 3123 -
vrodrigu@eso.org

National contacts for the media:

Belgium - Dr. Rodrigo Alvarez +32-2-474 70 50 rodrigo.alvarez@oma.be
Czech Republic - Pavel Suchan +420 267 103 040 suchan@astro.cz
Denmark - Dr. Michael Linden-Vørnle +45-33-18 19 97 mykal@tycho.dk
Finland - Ms. Riitta Tirronen +358 9 7748 8369 riitta.tirronen@aka.fi
France - Dr. Daniel Kunth +33-1-44 32 80 85 kunth@iap.fr
Germany - Dr. Jakob Staude +49-6221-528229 staude@mpia.de
Italy - Dr. Leopoldo Benacchio +39-347-230 26 51 benacchio@inaf.it

The Netherlands - Dr. Marieke Baan +31-20-525 74 80 mbaan@science.uva.nl
Portugal - Prof. Teresa Lago +351-22-089 833 mtlago@astro.up.pt
Spain - Dr. Miguel Mas-Hesse +34918131196 mm@laeff.inta.es
Sweden - Dr. Jesper Sollerman +46-8-55 37 85 54 jesper@astro.su.se
Switzerland - Dr. Martin Steinacher +41-31-324 23 82 martin.steinacher@sbf.admin.ch
United Kingdom - Mr. Peter Barratt +44-1793-44 20 25 peter.barratt@stfc.ac.uk
USA - Dr. Paola Rebusco +1-617-308-2397 prebusco@eso.org